Comparison of three methodologies of seismic analyses of NATM tunnel in fine soils of Santiago

Authors

  • David Solans ARCADIS Chile, Chile
  • Cristian Hormazábal ARCADIS Chile, Chile
  • Benjamin Rojas ARCADIS Chile, Chile
  • Roberto León ARCADIS Chile, Chile

DOI:

https://doi.org/10.4067/S0718-28132015000100002

Keywords:

tunnels, NATM, numerical modelling 3D, seismic analysis

Abstract

Seismic design of tunnels is often based on simplified models through analytical expressions for elemental geometries and structural softwares which not include soil stress path due to construction stages and the distance of the front of the excavation, resulting in overestimating the tunnels stresses. However, the development of finite differences or finite elements software has provided new tools that solve these problems and allow evaluating the seismic response through seismic records. This article compares the seismic response of NATM tunnels in soft soil of Santiago through the seismic distortion method of soil applied in a structural analysis software and a finite difference software for soil - structure interaction. Additionally, a seismic record is applied to the last case. The results of these analyses are compared in terms of seismic response of soils and structural design according to current Chilean practice.

References

ACI (2008). Requisitos de Reglamento para Concreto Estructural (ACI 318S-08) y Comentario, American Concrete Institute, USA

ARCADIS (2014). Base de datos de diversas unidades de suelos. Sección de Geotecnia.

ITASCA (2011). FLAC3D: Theory and Background. ITASCA Consulting Group Inc.

Kuesel, T. (1969). Earthquake design criteria for subways. Journal of Structural Division 95, N° ST6, 1213-1231. https://doi.org/10.1061/JSDEAG.0002292

Kuhlemeyer, R. and Lysmer, J. (1973). Finite element method accuracy for wave propagation problemas. Journal of Soil Mechanics and Foundations Division 99 (SM5), 421-427. https://doi.org/10.1061/JSFEAQ.0001885

Lucarelli, A., Guiducci, G., Furlani, G. and Sorge, R. (2011). Cap-Yield model with cohesion, back analysis of real excavations. 2nd International FLAC/DEM Symposium, Melbourn Australia

Manual de Carreteras (2014). Instrucciones y criterios de diseño. Vol. N° 3. Dirección de Vialidad. Ministerio de Obras Públicas

Mejia, L.H. and Dawson, E.M. (2006). Earthquake deconvolution for FLAC. 4th International FLAC Symposium on Numerical Modelling in Geomechanics.

Penzien, J. and Wu, C.L (1998). Stresses in linings of bored tunnels. Earthquake Engineering Structural Dynamics 27(3), 283-300. https://doi.org/10.1002/(SICI)1096-9845(199803)27:3%3C283::AID-EQE732%3E3.0.CO;2-T

Penzien, J. (2000). Seismically induced racking of tunnel linings. Earthquake Engineering Structural Dynamics 29(5), 683-691. https://doi.org/10.1002/(SICI)1096-9845(200005)29:5%3C683::AID-EQE932%3E3.0.CO;2-1

Saragoni, R. y Ruíz, S. (2012). Implicaciones y nuevos desafíos de diseño sísmico de los acelerogramas del terremoto del 2010. En: Mw = 8.8. Terremoto en Chile, 27 de febrero 2010. Departamento de Ingeniería Civil, Universidad de Chile. Editora Maval, 127-146

Wang, J.N. (1993). Seismic design of tunnels. Parsons Brickerhoff, Quade & Douglas, Inc. Monograph 7

Downloads

Published

2015-06-01

Issue

Section

Articles

How to Cite

Comparison of three methodologies of seismic analyses of NATM tunnel in fine soils of Santiago. (2015). Obras Y Proyectos, 17, 14-21. https://doi.org/10.4067/S0718-28132015000100002