Efectos de sitio para Ingenieros Geotécnicos, estudio del valle Parkway
DOI:
https://doi.org/10.4067/S0718-28132014000200001Palabras clave:
efectos de sitio, sismología, ingeniería geotécnicaResumen
La ingeniería geotécnica aborda la interfase entre las obras de ingeniería civil y el suelo. Por ello, en lo que concierne al impacto de los sismos en las construcciones está en la interfase entre sismología y dinámica estructural. Los profesionales involucrados deben trabajar en forma conjunta para poder establecer una estimación del movimiento sísmico máximo esperado durante la vida útil del proyecto ingenieril. Esa estimación debe tomar en cuenta los efectos de sitio (la amplificación del movimiento sísmico esperada dadas las condiciones geológicas superficiales en el sitio de interés). La estimación de los efectos de sitio puede mejorar si se incluye la información obtenida durante la exploración geotécnica usada para el diseño de las fundaciones. Por otra parte, ese diseño sería más racional si durante su elaboración se toman en cuenta las restricciones e incertidumbres que limitaron la estimación de efectos de sitio. Ese intercambio entre sismología e ingeniería requiere mejorar la comunicación entre ambas disciplinas y difundir entre los colegas del campo opuesto la forma de abordar los problemas en cada una de las dos áreas. Este trabajo pretende contribuir a esa comunicación. Se presenta una revisión del estado de la práctica en el estudio de efectos de sitio en sismología. Se abordan las técnicas usuales para estimar la amplificación debida a depósitos de suelos blandos a partir de registros de sismos o de ruido sísmico. Se presentan también resultados de la simulación numérica de efectos de sitio. Como ejemplo, se discuten los efectos de sitio en el pequeño valle aluvial de Parkway. El objetivo es presentar los problemas e incertidumbres asociados a los efectos de sitio, desde el punto de vista de su impacto en la ingeniería geotécnica y la confiabilidad de nuestras estructuras. Se espera fomentar el diálogo entre ambas disciplinas.
Referencias
Aki, K. (1967). Scaling law of seismic spectrum. Journal of Geophysical Research 72(4), 1217-1231. https://doi.org/10.1029/JZ072i004p01217
Anderson, J.G. and Hough, S.E. (1984). A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bulletin of the Seismology Society of America 74(5), 1969-1993. https://doi.org/10.1785/BSSA0740051969
Andrews, D.J. (1986). Objective determination of source parameters and similarity of earthquakes of different size. In Das et al. (eds.) American Geophysical Union, Washington, D.C., 259-268. https://doi.org/10.1029/GM037p0259
Assimaki, D., Ledezma, C., Montalva, G.A., Tassara, A., Mylonakis G. and Boroschek, R. (2012). Site effects and damage patterns. Earthquake Spectra 28(S1), S55-S74. https://doi.org/10.1193/1.4000029
Astroza, M. and Monge, J. (1991). Seismic microzones in the city of Santiago. Relation damage-geological unit. Proceedings 4th International Conference on Seismic Zonation, Stanford, 2529 August, 3, 595-601.
Bard, P.-Y. and Bouchon, M. (1980a).The seismic response of sediment-filled valleys. Part 1. The case of incident SH waves. Bulletin of the Seismology Society of America 70(4), 1263-1286. https://doi.org/10.1785/BSSA0700041263
Bard, P.-Y. and Bouchon, M. (1980b). The seismic response of sediment-filled valleys. Part 2. The case of incident P and SV waves. Bulletin of the Seismology Society of America 70(5), 1921-1941. https://doi.org/10.1785/BSSA0700051921
Bard, P.Y. (1999). Microtremor measurements: a tool for site effect estimation?. In: Irikura et al. (eds.) The effects of surface geology on seismic motion. Balkema, Rotterdam, 1251-1279
Beetham, R.D. (1997). Microzoning project: Parkway basin investigations, Wainuiomata. Science Report, Institute of Geological and Nuclear Sciences, P.O. Box 30-368, Lower Hutt, New Zealand
Begg, J.C., Mildenhall, D.C., Lyon, G.L., Stephenson, W.R., Funnell, R.H., Van Dissen, R.J., Bannister, S., Brown, L.J., Pillans, B., Harper, M.A. and Whitton, J. (1993). A paleoenvironmental study of subsurface Quaternary sediments at Wainuiomata, Wellington, New Zealand, and tectonic implications. New Zealand Journal of Geology and Geophysics 36, 461-473. https://doi.org/10.1080/00288306.1993.9514592
Boatwright, J., Fletcher, J.B. and Fumal, T.E. (1991). A general inversion scheme for source, site, and propagation characteristics using multiply recorded sets of moderate-sized earthquakes. Bulletin of the Seismological Society of America 81(5), 1754-1782. https://doi.org/10.1785/BSSA0810051754
Boore, D.M. (1983). Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bulletin of the Seismological Society of America 73(6A), 1865-1894. https://doi.org/10.1785/BSSA07306A1865
Boore, D.M. (2004). Can site response be predicted?. Journal of Earthquake Engineering 8, Special Issue 1, 1-41. https://doi.org/10.1080/13632460409350520
Borcherdt, R.D. (1970). Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America 60(1), 29-61. https://doi.org/10.1785/BSSA0600010029
Borcherdt, R.D. (1994). Estimates of site-dependent response spectra for design (methodology and justification). Earthquake Spectra 10(4), 617-653. http://dx.doi.org/10.1193/1.1585791
Brune, J.N. (1970). Tectonic stress and spectra of seismic shear waves from earthquakes. Journal of Geophysical Research 75(26), 4997-5009. https://doi.org/10.1029/JB075i026p04997
Burdick, L.J. and Langston, C.A. (1977). Modeling crustal structure through the use of converted phases in teleseismic body-wave forms. Bulletin of the Seismological Society of America 67(3), 677-691. https://doi.org/10.1785/BSSA0670030677
Cardarelli, E., Cercato, M., de Nardis, R., Di Filippo, G. and Milana, G. (2008). Geophysical investigations for seismic zonation in municipal areas with complex geology: the case study of Celano, Italy. Soil Dynamics & Earthquake Engineering 28(12), 950-963. https://doi.org/10.1016/j.soildyn.2008.05.003
Chaljub, E., Moczo, P., Tsuno, S., Bard, P.-Y., Kristek, J., Käser, M., Stupazzini, M. and Kristekova, M. (2010). Quantitative comparison of four numerical predictions of 3D ground motion in the Grenoble valley, France. Bulletin of the Seismological Society of America 100(4), 1427-1455. https://doi.org/10.1785/0120090052
Chávez-García, F.J. (2003). Site effects in Parkway basin: Comparison between observations and 3D modeling. Geophysical Journal International 154(3), 633-646. https://doi.org/10.1046/j.1365-246X.2003.02055.x
Chávez-García, F.J. (2011). Site effects due to topography and to soft soil layers: progress made and pending issues. A personal perspective. 5th International Conference on Earthquake Geotechnical Engineering, Chilean Geotechnical Society, Santiago, Chile, 105-136.
Chávez-García, F.J., Pedotti, G., Hatzfeld, D. and Bard, P.-Y. (1990). An experimental study of site effects near Thessaloniki (northern Greece). Bulletin of the Seismological Society of America 80(4), 784-806
Chávez-García, F.J., Stephenson, W.R. and Rodríguez, M. (1999). Lateral propagation effects observed at Parkway, New Zealand. A case history to compare 1D vs 2D site effects. Bulletin of the Seismological Society of America 89(3), 718-732. https://doi.org/10.1785/BSSA0890030718
Chávez-García, F.J., Raptakis, D., Makra, K. and Pitilakis, K. (2000). Site effects at Euroseistest-II. Results from 2D numerical modeling and comparison with observations. Soil Dynamics & Earthquake Engineering 19(1), 23-39. https://doi.org/10.1016/S0267-7261(99)00026-3
Chávez-García, F.J., Castillo, J. and Stephenson, W.R. (2002). 3D site effects. A thorough analysis of a high quality dataset. Bulletin of the Seismological Society of America 92(2), 1941-1951. https://doi.org/10.1785/0120010149
De Martin, F., Matsushima, S. and Kawase, H. (2013). Impact of geometric effects on near-surface Green's functions. Bulletin of the Seismological Society of America 103, 3289-3304. https://doi.org/10.1785/0120130039
Duggan, E.B. (1997). Shallow seismic structure of Parkway Basin, Wainuiomata, New Zealand. B.Sc. (Hons) thesis, Victoria University of Wellington, New Zealand
Fernández-Ares, A. and Bielak, J. (2006). Urban Seismology: Interaction between earthquake ground motion and multiple buildings in urban regions. Proceedings Third International Symposium on the Effects of Surface Geology on Seismic Motion, 87-96, Laboratoire Central de Ponts et Chaussées, Grenoble, (Keynote paper), 2006.
Field, E.H. and Jacob, K.H. (1995). A comparison and test of various site-response estimation techniques, including three that are not reference-site dependent. Bulletin of the Seismological Society of America 85(4), 1127-1143. https://doi.org/10.1785/BSSA0850041127
Field, E.H., Hough, S.E. and Jacob, K.H. (1990). Using microtremors to asses potential earthquake site response: a case study in Flushing Meadows, New York City. Bulletin of the Seismological Society of America 80(6A), 1456-1480. https://doi.org/10.1785/BSSA08006A1456
Groby, J.-P. and Wirgin, A. (2008). Seismic motion in urban sites consisting of blocks in welded contact with a soft layer overlying a hard half-space. Geophysical Journal International 172(2), 725-758. https://doi.org/10.1111/j.1365-246X.2007.03678.x
Guéguen, P., Bard, P.-Y. and Oliveira, C.S. (2000). Experimental and numerical analysis of soil motions caused by free vibrations of a building model. Bulletin of the Seismological Society of America 90(6), 1464-1479. https://doi.org/10.1785/0119990072
Guéguen, P., Bard, P.-Y. and Chávez-García, F.J. (2002). Sitecity seismic interaction in Mexico City-like environments: an analytical study. Bulletin of the Seismological Society of America 92(2), 794-811. https://doi.org/10.1785/0120000306
Hellel, M., Chatelain, J.L., Guillier, B., Machane, D., Ben Salem, R., Oubaiche, E.H. and Haddoum, H. (2010). Heavier damages without site effects and site effects with lighter damages: Bourmedes city (Algeria) after the May 2003 earthquake. Seismological Research Letters 81(1), 37-43. https://doi.org/10.1785/gssrl.81.1.37
Horike, M., Zhao, B. and Kawase, H. (2001). Comparison of site response characteristics inferred from microtremors and earthquake shear waves. Bulletin of the Seismological Society of America 91(6), 1526-1536. https://doi.org/10.1785/0120000065
Kagami, H., Duke, C.M., Liang, G.C. and Ohta, Y. (1982). Observation of 1 to 5 second microtremors and their application to earthquake engineering. Part II. Evaluation of site effect upon seismic wave amplification due to extremely deep soil deposits. Bulletin of the Seismological Society of America 72(3), 987-998. https://doi.org/10.1785/BSSA0720030987
Kagami, H., Okada, S., Shiono, K., Oner, M., Dravinski, M. and Mal, A.K. (1986). Observation of 1 to 5 second microtremors and their application to earthquake engineering. Part III. A two-dimensional study of site effects in San Fernando valley. Bulletin of the Seismological Society of America 76(6), 1801-1812. https://doi.org/10.1785/bssa0760061801
Kanai, K. and Tanaka, T. (1954). Measurement of the microtremor. Bulletin of the Earthquake Research Institute 32, 199-209
King, J.L. and Tucker, B.E. (1984). Observed variations of earthquake motion across a sediment-filled valley. Bulletin of the Seismological Society of America 74(1), 137-151. https://doi.org/10.1785/BSSA0740010137
Kristek, J., Moczo, P. and Archuleta, R.J. (2002). Efficient methods to simulate planar free surface in the 3D 4th-order staggered-grid finite-difference schemes. Studia Geophysica et Geodaetica 46(2), 355-381. https://doi.org/10.1023/A:1019866422821
Langston, C.A. (1977). The effect of planar dipping structure on source and receiver responses for constant ray parameter. Bulletin of the Seismological Society of America 67(3), 1029-1050. https://doi.org/10.1785/BSSA0670041029
Langston, C.A. (1979). Structure under Mount Rainier, Washington, inferred from teleseismic body waves. Journal Geophysical Research 84(B9), 4749-4762. https://doi.org/10.1029/JB084iB09p04749
Lermo, J. and Chávez-García, F.J. (1993). Site effect evaluation using spectral ratios with only one station. Bulletin of the Seismological Society of America 83(5), 1574-1594. https://doi.org/10.1785/BSSA0830051574
Lermo, J. and Chávez-García, F.J. (1994). Are microtremors useful in site response evaluation?. Bulletin of the Seismological Society of America 84(5), 1350-1364. https://doi.org/10.1785/BSSA0840051350
Leyton, F. and Ruiz, S. (2011). Comparison of the behavior of site from strong motion data of 1985 central Chile earthquake (Ms=7.8) and microtremors measurements. 5th International Conference on Earthquake Geotechnical Engineering, Santiago, Chile
Manakou, M.V., Raptakis, D.G., Chávez-García, F.J., Apostolidis, P.I. and Pitilakis, K.D. (2010). 3D soil structure of the Mygdonian basin for site response analysis. Soil Dynamics & Earthquake Engineering 30(11), 1198-1211. https://doi.org/10.1016/j.soildyn.2010.04.027
Moczo, P., Kristek, J., Vavrycuk, V., Archuleta, R.J. and Halada, L. (2002). 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities. Bulletin of the Seismological Society of America 92(8), 3042-3066. https://doi.org/10.1785/0120010167
Montalva, G.A. and Rodríguez-Marek, A. (2010). Random Fields for Site Response Analysis. GeoFlorida, West Palm Beach, Florida, USA
Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. QR of RTRI, 30, 25-33
Ohta, Y., Kagami, H., Goto, N. and Kudo, K. (1978). Observation of 1- to 5-second microtremors and their application to earthquake engineering. Part I: comparison with long-period accelerations at the Tokachi-Oki earthquake of 1968. Bulletin of the Seismological Society of America 68(3), 767-779. https://doi.org/10.1785/BSSA0680030767
Olsen, K.B. (2000). Site Amplification in the Los Angeles basin from three-dimensional modeling of ground motion. Bulletin of the Seismological Society of America 90(6B), S77-S94. https://doi.org/10.1785/0120000506
Olsen, K.B., Pechmann, J.C. and Schuster, G.T. (1995). Simulation of 3D elastic wave propagation in the Salt Lake Basin. Bulletin of the Seismological Society of America 85(6), 1688-1710. https://doi.org/10.1785/BSSA0850061688
Olsen, K.B., Day, S.M., Minster, J.B., Cui, Y., Chourasia, A., Okaya, D., Maechling, P. and Jordan, T. (2008). TeraShake2: spontaneous rupture simulations of Mw 7.7 earthquakes on the southern San Andreas fault. Bulletin of the Seismological Society of America 98(3), 1162-1185. https://doi.org/10.1785/0120070148
Peterson, J. (1993). Observations and modeling of seismic background noise. US Geological Survey Open-File Rept.93-322-95. https://doi.org/10.3133/ofr93322
Pilz, M., Parolai, S., Leyton, F., Campos, J. and Zschau, J. (2009). A comparison of site response techniques using earthquake data and ambient seismic noise analysis in the large urban areas of Santiago de Chile. Geophysical Journal International 178(2), 713-728. https://doi.org/10.1111/j.1365-246X.2009.04195.x
Pilz, M., Parolai, S., Picozzi, M., Wang, R., Leyton, F., Campos, J. and Zschau, J. (2010). Shear wave velocity model of the Santiago de Chile basin derived from ambient noise measurements: a comparison of proxies for seismic site conditions and amplification. Geophysical Journal International 182(1), 355-367. https://doi.org/10.1111/j.1365-246X.2010.04613.x
Pilz, M., Parolai, S., Stupazzini, M., Paolucci, R. and Zschau, J. (2011). Modelling basin effects on earthquake ground motion in the Santiago de Chile basin by a spectral element code. Geophysical Journal International 187(2), 929-945. https://doi.org/10.1111/j.1365-246X.2011.05183.x
Poggi, V. and Fäh, D. (2010). Estimating Rayleigh wave particle motion from three-component array analysis of ambient vibrations. Geophysical Journal International 180(1), 251-267. https://doi.org/10.1111/j.1365-246X.2009.04402.x
Raptakis, D., Theodulidis, N. and Pitilakis, K. (1998). Data analysis of the Euroseistest strong motion array in Volvi (Greece): standard and horizontal-to-vertical spectral ratio techniques. Earthquake Spectra 14(1), 203-224. https://doi.org/10.1193/1.1585996
Raptakis, D., Chávez-García, F.J., Makra, K. and Pitilakis, K. (2000). Site effects at Euroseistest-I. Determination of the valley structure and confrontation of observations with 1D analysis. Soil Dynamics & Earthquake Engineering 19(1), 1-22. https://doi.org/10.1016/S0267-7261(99)00025-1
Rodriguez-Marek, A., Montalva, G.A., Cotton, F., and Bonilla, F. (2011). Analysis of single-station standard deviation using the Kik-Net data. Bulletin of the Seismological Society of America 101(3), 1242-1258. https://doi.org/10.1785/0120100252
Roten, D., Olsen, K.B., Pechmann, J.C., Cruz-Atienza, V.M. and Magistrale, H. (2011). 3D simulations of M 7 earthquakes on the Wasatch fault, Utah, part I: long-period (0-1 Hz) ground motion. Bulletin of the Seismological Society of America 101(5), 2045-2063. https://doi.org/10.1785/0120110031
Roten, D., Olsen, K.B. and Pechmann, J.C. (2012). 3D Simulations of M 7 earthquakes on the Wasatch fault, Utah, part II: broadband (0-10 Hz) ground motions and nonlinear soil behavior. Bulletin of the Seismological Society of America 102(5), 2008-2030. https://doi.org/10.1785/0120110286
Steidl, J.H., Tumarkin, A.G. and Archuleta, R.J. (1996). What is a reference site?. Bulletin of the Seismological Society of America 86(6), 1733-1748. https://doi.org/10.1785/BSSA0860061733
Yu, J. and Haines, J. (2003). The choice of references sites for seismic ground amplification analyses: case study at Parkway, New Zealand. Bulletin of the Seismological Society of America 93(2), 713-723. https://doi.org/10.1785/0120010289

Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2014 Universidad Católica de la Santísima Concepción

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.