Lateral spreading inducido por licuación en Lo Rojas, Coronel, estudio de terreno y modelo numérico

Autores/as

  • Gabriel de la Maza Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de Chile, Chile
  • Nicole Williams Department of Civil and Environmental Engineering, Brigham Young University, USA
  • Esteban Sáez Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de Chile, Chile https://orcid.org/0000-0001-5433-0388
  • Kyle Rollins Department of Civil and Environmental Engineering, Brigham Young University, USA https://orcid.org/0000-0002-8977-6619
  • Christian Ledezma Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de Chile, Chile https://orcid.org/0000-0003-3821-6264

DOI:

https://doi.org/10.4067/S0718-28132015000100013

Palabras clave:

extensión lateral, SPT, CPT, técnicas basadas en ondas de superficie, expresiones empíricas de predicción, modelación mediante elementos finitos

Resumen

El presente artículo describe un estudio de terreno detallado que se efectuó en caleta Lo Rojas, comuna de Coronel, donde se observó una importante extensión lateral gatillada por licuación durante el pasado terremoto del Maule, 2010. El estudio de terreno incluyó sondajes SPT y CPT, así como la aplicación de algunas técnicas geofísicas basadas en ondas de superficie. Sobre la base de esta información, se evaluaron expresiones empíricas de predicción de extensión lateral y se elaboró un modelo detallado de elementos finitos hidro-mecánico. Los resultados de ambos métodos se ajustan razonablemente bien a las observaciones post-sísmicas en el lugar.

Referencias

Aki, K. (1957). Space and time spectra of stationary stochastic waves, with spectral reference to microtremors. Bulletin of the Earthquake Research Institute 35: 415-456

Aubry, D. et Modaressi, A. (1996). GEFDyn: Manuel Scientifique. Ecole Centrale Paris (en francés).

Bartlett, S. and Youd, L. (1995). Empirical prediction of liquefaction-induced lateral spread. Journal of Geotechnical and Geoenvironmental Engineering 121(4): 316-329. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:4(316). https://doi.org/10.1061/(ASCE)0733-9410(1995)121:4(316)

Bartlett, S. and Youd, L. (1992). Empirical analysis of horizontal ground displacement generated by liquefaction-induced lateral spread. Technical Report No.NCEER-92-0021, National Center for Earthquake Engineering Research, Buffalo, N.Y.

Bielak, J., Loukakis, K., Hisada, Y. and Yoshimura, C. (2003). Domain reduction method for three-dimensional earthquake modeling in localized regions; Part I, Theory. Bulletin of the Seismological Society of America 93(2):817-824. https://doi.org/10.1785/0120010251

Bray, J., Rollins, K., Hutchinson, T., Verdugo, R., Ledezma, C., Mylonakis, G., Assimaki, D., Montalva, G., Arduino, P., Olson, M., Kayen, R., Hashash, Y.M.A. and Candia, G. (2012). Effects of ground failure on buildings, ports, and industrial facilities. Earthquake Spectra 28, No. S1, 97-118. https://doi.org/10.1193/1.4000034

Bray, J. and Sancio, R. (2006). Assessment of the liquefaction susceptibility of fine-grained soils. Journal of Geotechnical and Geoenvironmental Engineering 132(9): 1165-1177. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:9(1165)

Hayashi, K. (2008). Development of the surface-wave methods and its application to site investigations. Ph.D dissertation, Kyoto University

Hujeux, J.C. (1985). Une loi de comportement pour le chargement cyclique des sols. En: Génie Parasismique, Presse ENPC, 287-302 (en francés)

Lacoss, R.T., Nelly, E.J and Toksöz, M.N. (1969). Estimation of seismic noise structure using arrays. Geophysics 34(1): 21-38. https://doi.org/10.1190/1.1439995

Liao, S. and Whitman, R. (1986). Overburden correction factors for SPT in sand. Journal of Geotechnical Engineering 114(4): 389-411. https://doi.org/10.1061/%28ASCE%290733-9410%281986%29112%3A3%28373%29

Lopez-Caballero, F. and Modaressi, A. (2008). Numerical simulation of liquefaction effects on seismic SSI. Soil Dynamics and Earthquake Engineering 28: 85-98. https://doi.org/10.1016/j.soildyn.2007.05.006

Lopez-Caballero, F. and Modaressi, A. (2010). Assessment of variability and uncertainties effects on the seismic response of a liquefiable soil profile. Soil Dynamics and Earthquake Engineering 7: 600-613. https://doi.org/10.1016/j.soildyn.2010.02.002

Mc Gann, C. and Arduino, P. (2011). Dynamic 2D Effective Stress Analysis of Slope. OpenSees Examples

Modaressi, H. and Benzenati I. (1994). Paraxial approximation for poroelastic media. Soil Dynamics and Earthquake Engineering 13, Issue 2, 117-129. https://doi.org/10.1016/0267-7261(94)90004-3

Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute 30: 25-30

Park, C.B., Miller, R.D. and Xia, J. (1999). Multichannel analysis of surface waves. Geophysics 64(3): 800-808.

Robertson, P.K. (2010). Soil behavior type from the CPT: an update. Proceedings of 2nd International Symposium on Cone Penetration Testing, CPT'10. Huntington Beach, CA, USA

Sáez, E. and Ledezma, C. (2014). Liquefaction mitigation using secant piles wall under a large water tank. In: Soil Liquefaction during Recent Large-Scale Earthquakes, CRC Press

Sambridge, M. (2001). Finding acceptable models in nonlinear inverse problems using a neighbourhood algorithm. Inverse Problems 17(3): 387. https://doi.org/10.1088/0266-5611/17/3/302

Vargas, G., Farías, M., Carretier, S., Tassara, A., Baize, S. and Melnick, D. (2011). Coastal uplift and tsunami effects associated to the 2010 Mw8.8 Maule earthquake in Central Chile. Andean Geology 38(1): 219-238

Wathelet, M., Jongmans, D., Ohrnberger, M. and Bonnefoy-Claudet, S. (2008). Array performances for ambient vibrations on a shallow structure and consequences over Vs inversion. Journal of Seismology 12(1): 1-19. https://doi.org/10.1007/s10950-007-9067-x

Youd, L., Hansen, C.M. and Bartlett, S. (2002). Revised multilinear regression equations for prediction of lateral spread displacement. Journal of Geotechnical and Geoenvironmental Engineering 128(12): 1007-1017. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:12(1007)

Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Liam Finn, W.D., Harder, Jr L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S., Marcuson III, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B. and Stokoe II, K.H. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering 127(10): 817-833. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(297)

Zienkiewicz, O., Bicanic, N. and Shen, F. (1988). Earthquake input definition and transmitting boundary conditions. In: Advances in Computational NonlinealMechanics, 109-138. https://doi.org/10.1007/978-3-7091-2828-2_3

Zienkiewicz, O. and Shiomi, T. (1984). Dynamic behaviour of saturated porous media: the generalized Biot formulation and its numerical solution. International Journal of Numerical and Analytical Methods in Geomechanics 8:71-96. https://doi.org/10.1002/nag.1610080106

Descargas

Publicado

2015-06-01

Número

Sección

Artículos

Cómo citar

Lateral spreading inducido por licuación en Lo Rojas, Coronel, estudio de terreno y modelo numérico. (2015). Obras Y Proyectos, 17, 106-115. https://doi.org/10.4067/S0718-28132015000100013