Procesos para los diseños por confiabilidad de muros de contención en ingeniería geotécnica
DOI:
https://doi.org/10.4067/S0718-28132017000200050Palabras clave:
muros de contención, fricción suelo muro, influencia geológica, probabilidad de fallaResumen
El diseño y construcción de cimentaciones, estructuras de contención y taludes se basan generalmente en formulaciones deterministas que no permiten la distinción entre la variabilidad natural y la dispersión inherente de los parámetros geotécnicos. Debido a la variabilidad inherente de las propiedades del suelo, existe una tendencia cada vez mayor en la implementación de diseños basados en la confiabilidad en geotecnia, con el fin de reducir las incertidumbres con métodos probabilísticos. Los diseños por confiabilidad requieren la definición de las funciones de densidad de probabilidad de las propiedades geotécnicas, además de tener el conocimiento de la variabilidad espacial correspondiente a cada tipo de suelo. Este artículo identifica los procedimientos, tipo de investigación del subsuelo, simulaciones y las áreas de estudio más comunes en los diseños geotécnicos basados en la confiabilidad. Se resalta la importancia de la longitud de correlación en la definición de los factores de reducción para determinar las probabilidades de falla y que el método de simulación más utilizado en estos diseños es Monte Carlo. Las áreas de la geotecnia más estudiadas en confiablidad son las de diseño de cimentaciones y análisis de estabilidad de las laderas, mientras que los análisis de muros de contención y muros de gaviones son los menos estudiados. Por otra parte, no se encontraron estudios en la determinación de la variación de la fricción suelo-muro ni en la influencia geológica para este tipo de estructuras, lo que implica un gran potencial para futuras investigaciones.
Referencias
Baecher, G.B. and Christian, J.T. (2003). Reliability and statistics in geotechnical Engineering. John Wiley and Sons
Basarir, H., Kumral, M., Karpuz, C. and Tutluoglu, L. (2010). Geostatistical modeling of spatial variability of SPT data for a borax stockpile site. Engineering Geology, 114(3), 154-163. https://doi.org/10.1016/j.enggeo.2010.04.012
Basha, B.M. and Sivakumar Babu, G.L. (2008). Target reliability based design optimization of anchored cantilever sheet pile walls. Canadian Geotechnical Journal 45(4), 535-548. https://doi.org/10.1139/T08-004
Basheer, I. and Najjar, Y. (1996). Reliability-based design of reinforced earth retaining walls. Transportation Research Record 1526(1), 64-78. https://doi.org/10.3141/1526-09
Basma, A.A. (1991a). Reliability-based design of sheet pile structures. Reliability Engineering & System Safety 33(2), 215-230
Basma, A.A. (1991b). Safety and reliability of anchored bulkhead walls. Structural Safety 10(4), 283-295
Cao, J., Liu, T. and Liu, H.M. (2014). Soil nailing reliability optimization design of foundation pit based on response surface method. Applied Mechanics and Materials 556, 4655-4659. https://doi.org/10.4028/www.scientific.net/AMM.556-562.4655
Cao, Z., Wang, J. and Wang, Y. (2013). Effects of spatial variability on reliability-based design of drilled shafts. Foundation Engineering in the Face of Uncertainty: Honoring Fred H. Kulhawy, Geotechnical Special Publication 229, 602-616. https://doi.org/10.1061/9780784413272.318
Carlsson, M. (2005). Management of geotechnical risks in infrastructure projects: An introductory study. PhD thesis, Royal Institute of Technology
Chalermyanont, T. and Benson, C.H. (2004). Reliability- based design for internal stability of mechanically stabilized earth walls. Journal of Geotechnical and Geoenvironmental Engineering 130(2), 163-173. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:2(163)
Chalermyanont, T. and Benson, C.H. (2005a). Method to estimate the system probability of failure of Mechanically Stabilized Earth (MSE) walls. GeoFrontiers Congress 2005, Slopes and Retaining Structures Under Seismic and Static Conditions, Austin, 2735-2749. https://doi.org/10.1061/40787(166)11
Chalermyanont, T. and Benson, C. H. (2005b). Reliability-based design for external stability of mechanically stabilized earth walls. International Journal of Geomechanics 5(3), 196-205. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:3(196)
Chen, J.B., Hu, Q. and Zhou, Y.W. (2011). Research of controlling for pile-anchor joint supporting structure on deformation of deep foundation pits. Advanced Materials Research 261, 1809-1813. https://doi.org/10.4028/www.scientific.net/AMR.261-263.1809
Cherubini, C. (2000). Probabilistic approach to the design of anchored sheet pile walls. Computers and Geotechnics 26(3), 309-330. https://doi.org/10.1016/S0266-352X(99)00044-0
Cherubini, C., Garrasi, A. and Petrolla, C. (1992). The reliability of an anchored sheet-pile wall embedded in a cohesionless soil. Canadian Geotechnical Journal 29(3), 426-435. https://doi.org/10.1139/t92-047
Cherubini, C., Vessia, G. and Pula, W. (2007). Statistical soil characterization of Italian sites for reliability analyses. Characterization and Engineering Properties of Natural Soils, Singapore, vol. 4, 2681-2706. https://doi.org/10.1201/NOE0415426916.ch28
Fan, H. and Liang, R. (2013). Reliability-based design of axially loaded drilled shafts using Monte Carlo method. International Journal for Numerical and Analytical Methods in Geomechanics 37(14), 2223-2238. https://doi.org/10.1002/nag.2131
Fenton, G.A. (1999). Random field modeling of CPT data. Journal of Geotechnical and Geoenvironmental Engineering 125(6), 486-498. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:6(486)
Fenton, G.A. and Griffiths, D.V. (2008). Risk assessment in geotechnical engineering. John Wiley & Sons
Fenton, G.A., Griffiths, D.V. and Williams, M.B. (2005). Reliability of traditional retaining wall design. Géotechnique 55(1), 55-62. http://dx.doi.org/10.1680/geot.55.1.55.58588
Fenton, G.A. and Griffiths, D.V. (2010). Reliability-based geotechnical engineering. GeoFlorida Conference, Orlando, 1-40
Firouzianbandpey, S., Griffiths, D.V., Ibsen, L.B. and Andersen, L.V. (2014). Spatial correlation length of normalized cone data in sand: case study in the north of Denmark. Canadian Geotechnical Journal 51(8), 844-857. https://doi.org/10.1139/cgj-2013-0294
Gambino, S.J. and Gilbert, R.B. (1999). Modeling spatial variability in pile capacity for reliability-based design. Analysis, Design, Construction, and Testing of Deep Foundations, Geotechnical Special Publication 88, 135-149
Goh, A.T.C. and Kulhawy, F.H. (2005). Reliability assessment of serviceability performance of braced retaining walls using a neural network approach. International Journal for Numerical and Analytical Methods in Geomechanics 29(6), 627-642. https://doi.org/10.1002/nag.432
Goh, A.T., Phoon, K.K. and Kulhawy, F.H. (2009). Reliability analysis of partial safety factor design method for cantilever retaining walls in granular soils. Journal of Geotechnical and Geoenvironmental Engineering 135(5), 616-622. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000061
Griffiths, D.V. and Fenton, G.A. (1993). Seepage beneath water retaining structures founded on spatially random soil. Géotechnique 43(4), 577-587. https://doi.org/10.1680/geot.1993.43.4.577
Griffiths, D.V., Fenton, G.A. and Ziemann, H.R. (2008). Reliability of passive earth pressure. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 2(2), 113-121. https://doi.org/10.1080/17499510802178640
Griffiths, D.V. and Lane, P.A. (1999). Slope stability analysis by finite elements. Géotechnique 49(3), 387-403. https://doi.org/10.1680/geot.1999.49.3.387
GuhaRay, A. and Baidya, D.K. (2014). Partial safety factors for retaining walls and slopes: A reliability based approach. Geomechanics and Engineering 6(2), 99-115
GuhaRay, A. and Baidya, D.K. (2015). Reliability-based analysis of cantilever sheet pile walls backfilled with different soil types using the finite-element approach. International Journal of Geomechanics 15(6), 6015001-11. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000475
Hegazy, Y.A., Withiam, J.L., Gladstone, R.A. and Anderson, P.L. (2009). LRFD pullout resistance calibration of coherent gravity method for steel reinforced MSE walls. 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, vol. 2, 1481-1484. https://doi.org/10.3233/978-1-60750-031-5-1481
Hidalgo, C.A. y Pacheco, A. (2011). Herramientas para análisis por confiabilidad en geotecnia: La teoría. Revista de Ingeniería de La Universidad de Medellín 10(18), 69-77
Hui, C.Y. and Zhu, Y.P. (2013). Analysis of the reliability of soil nailing supporting structure. Applied Mechanics and Materials 353, 540-543
Jha, S.K. (2014). Effect of spatial variability of soil properties on slope reliability using random finite element and first order second moment methods. Indian Geotechnical Journal 45(2), 145-155. https://doi.org/10.1007/s40098-014-0118-2
Juang, C.H., Liu, Z. and Atamturktur, H.S. (2013). Reliability- based robust geotechnical design of retaining walls. Sound Geotechnical Research to Practice: Honoring Robert D. Holtz II, Geotechnical Special Publication 230, 514-524
Kim, D. and Salgado, R. (2012). Load and resistance factors for external stability checks of mechanically stabilized earth walls. Journal of Geotechnical and Geoenvironmental Engineering 138(3), 241-251. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000595
Koreta, O., Myftaraga, E. and Tanku, E. (2015). Probabilistic analysis of a cantilever sheet pile wall penetrating clay. XVI European Conference on Soil Mechanics and Geotechnical Engineering, Edimburgh, Vol. 7, 3965-3970. http://dx.doi.org/10.1680/ecsmge.60678.vol7.626
Lacasse, S. and Nadim, F. (1998). Risk and reliability in geotechnical engineering. 4th International Conference on Case Histories in Geotechnical Engineering, St. Louis, 1172-1192
Li, D.Q., Shao, K.B., Cao, Z.J., Tang, X.S. and Phoon, K.K. (2016). A generalized surrogate response aided-subset simulation approach for efficient geotechnical reliability-based design. Computers and Geotechnics 74, 88-101. https://doi.org/10.1016/j.compgeo.2015.12.010
Liu, Z., Juang, C.H. and Atamturktur, S. (2013). Confidence level-based robust design of cantilever retaining walls in sand. Computers and Geotechnics 52, 16-27. https://doi.org/10.1016/j.compgeo.2013.03.001
Low, B.K. (2005). Probabilistic design of anchored sheet pile wall. 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Vol. 4, 2825-2828. https://doi.org/10.3233/978-1-61499-656-9-2825
Low, B.K. and Phoon, K.K. (2015). Reliability-based design and its complementary role to Eurocode 7 design approach. Computers and Geotechnics 65, 30-44. https://doi.org/10.1016/j.compgeo.2014.11.011
Lu, R.L. and Jiang, Q.H. (2012). Reinforcement scheme and numerical simulation for sequential excavation of the deep foundation pit. Applied Mechanics and Materials 204, 359-365. https://doi.org/10.4028/www.scientific.net/AMM.204-208.359
Mandali, A.K., Sujith, M.S., Rao, B.N. and Maganti, J. (2011). Reliability analysis of counterfort retaining walls. Electronic Journal of Structural Engineering 11 (1), 42-56. https://doi.org/10.56748/ejse.11142
Mattos, A.J. and Viviescas, J.C. (2015). Diseño por confiabilidad de zapatas sobre suelos arenosos utilizando el método de Monte Carlo. Bachelor of Engineering thesis, Universidad de Antioquia.
Mitchell, J.K. and Soga, K. (2005). Fundamentals of soil behavior. John Wiley & Sons
Miyata, Y. and Bathurst, R.J. (2012). Reliability analysis of soilgeogrid pullout models in Japan. Soils and Foundations 52(4), 620-633. https://doi.org/10.1016/j.sandf.2012.07.004
Montgomery, D.C. and Runger, G.C. (2003). Applied Statistics and Probability for Engineers. John Wiley & Sons
Papaioannou, I. and Straub, D. (2012). Reliability updating in geotechnical engineering including spatial variability of soil. Computers and Geotechnics 42, 44-51. https://doi.org/10.1016/j.compgeo.2011.12.004
Papaioannou, I. and Straub, D. (2010). Geotechnical reliability updating using stochastic FEM. Reliability and Optimization of Structural Systems, Munich, 155-162
Phoon, K.K. (2008). Reliability-based design in geotechnical engineering: computations and applications. CRC Press
Phoon, K.K. and Kulhawy, F.H. (1999a). Characterization of geotechnical variability. Canadian Geotechnical Journal 36(4), 612-624. https://doi.org/10.1139/t99-038
Phoon, K.K. and Kulhawy, F.H. (1999b). Evaluation of geotechnical property variability. Canadian Geotechnical Journal 36(4), 625-639. https://doi.org/10.1139/t99-039
Phoon, K., Kulhawy, F.H. and Grigoriu, M.D. (1995). Reliability- based design of foundations for transmission line structures. Report TR-105000, Palo Alto
Prada, F., Ramos, A., Solaque, D. and Caicedo, B. (2011). Reliability applied to the geotechnical design of a retaining wall. Obras y Proyectos 9, 49-58 (in Spanish)
Prastings, A., Larsson, S. and Müller, R. (2016). Multivariate approach in reliability-based design of a sheet pile wall. Transportation Geotechnics 7, 1-12
Qingnian, Y. and Yuzhou, S. (2011). The fitting method of parameter distributions in geotechnical engineering under small sample. 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce, IEEE, 7366-7369
Rosenblueth, E. (1975). Point estimates for probability moments. Proceedings of the National Academy of Sciences 72(10), 3812-3814. https://doi.org/10.1073/pnas.72.10.3812
Sessa, S. and D’Urso, M.G. (2013). Employment of Bayesian networks for risk assessment of excavation processes in dense urban areas. 11th International Conference on Structural Safety and Reliability, 3163-3169. https://doi.org/10.1201/b16387-457
Sivakumar Babu, G.L. and Singh, V.P. (2011). Reliability-based load and resistance factors for soil-nail walls. Canadian Geotechnical Journal 48(6), 915-930. https://doi.org/10.1139/t11-005
Sivakumar Babu, G.L. and Singh, V.P. (2010). Reliability analyses of a prototype soil nail wall using regression models. Geomechanics and Engineering 2(2), 71-88. https://doi.org/10.12989/gae.2010.2.2.071
Sivakumar Babu, G.L. and Singh, V.P. (2009). Reliability analysis of soil nail walls. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 3(1), 44-54. https://doi.org/10.1080/17499510802541425
Sivakumar Babu, G.L. and Srivastava, A. (2007). Reliability analysis of allowable pressure on shallow foundation using response surface method. Computers and Geotechnics 34(3), 187-194. https://doi.org/10.1016/j.compgeo.2006.11.002
Smith, I.M., Griffiths, D.V. and Margetts, L. (2013). Programming the finite element method. John Wiley & Sons
Uzielli, M., Lacasse, S., Nadim, F. and Phoon, K.K. (2006). Soil variability analysis for geotechnical practice. Characterisation and Engineering Properties of Natural Soils, vol. 3, 1653-1752. https://doi.org/10.1201/NOE0415426916.ch3
Vanmarcke, E.H. (1977). Probabilistic modeling of soil profiles. Journal of the Geotechnical Engineering Division 103(11), 1227-1246. https://doi.org/10.1061/AJGEB6.0000517
Wang, Y. (2013). MCS-based probabilistic design of embedded sheet pile walls. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 7(3), 151-162. https://doi.org/10.1080/17499518.2013.779833
Wesley, L. (2011). Stability of slopes in residual soils. Obras y Proyectos 10, 47-61. https://doi.org/10.4067/S0718-28132011000200005
Wesley, L. (2009). Behaviour and geotechnical properties of residual soils and allophane clays. Obras y Proyectos 6, 33-50
Wu, X.Z. (2013). Trivariate analysis of soil ranking-correlated characteristics and its application to probabilistic stability assessments in geotechnical engineering problems. Soils and Foundations 53(4), 540-556. https://doi.org/10.1016/j.sandf.2013.06.006
Zevgolis, I.E. and Bourdeau, P.L. (2010a). Probabilistic analysis of retaining walls. Computers and Geotechnics 37(3), 359-373. https://doi.org/10.1016/j.compgeo.2009.12.003
Zevgolis, I.E. and Bourdeau, P.L. (2010b). System reliability analysis of the external stability of reinforced soil structures. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 4(3), 148-156. https://doi.org/10.1080/17499511003630496
Zevgolis, I.E. and Bourdeau, P.L. (2008). Stochastic modeling of redundancy in mechanically stabilized earth (MSE) walls. GeoCongress 2008, New Orleans, 1179-1186. https://doi.org/10.1061/40971(310)147
Zhang, L.L., Zhang, L.M. and Tang, W.H. (2009). Uncertainties of field pullout resistance of soil nails. Journal of Geotechnical and Geoenvironmental Engineering 135(7), 966-972. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000014
Zhao, Y.L. and An, W.G. (2011). Reliability-based stability analysis of a foundation pit supported by composite soil nailing. Journal of Harbin Engineering University 32(10), 1300-1304
Zou, H.F., Cai, G.J., Liu, S.Y. and Lin, J. (2015). Research on modeling inherent spatial variability of piezocone penetration test cone tip resistance based on geostatistics. Rock and Soil Mechanics 36(S1), 403-407. https://doi.org/10.16285/j.rsm.2015.S1.070

Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2017 Universidad Católica de la Santísima Concepción

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.