Análisis dinámico de una torre autosoportada sujeta a cargas de viento y sismo

Autores/as

  • Ingrid Fernández Lorenzo Facultad de Ingeniería Civil, Universidad Tecnológica de La Habana José Antonio Echeverría CUJAE, Cuba https://orcid.org/0000-0002-1223-0968
  • Vivian Beatriz Elena Parnás Facultad de Ingeniería Civil, Universidad Tecnológica de La Habana José Antonio Echeverría CUJAE, Cuba https://orcid.org/0000-0001-7912-7570
  • Patricia Martín Rodríguez Facultad de Ingeniería Civil, Universidad Tecnológica de La Habana José Antonio Echeverría CUJAE, Cuba https://orcid.org/0000-0002-8954-5159
  • Yanet Corona Macías Facultad de Ingeniería Civil, Universidad Tecnológica de La Habana José Antonio Echeverría CUJAE, Cuba https://orcid.org/0000-0002-7950-1216
  • Israel A. Hernández Facultad de Ingeniería Civil, Universidad Tecnológica de La Habana José Antonio Echeverría CUJAE, Cuba

DOI:

https://doi.org/10.4067/s0718-28132018000100078

Palabras clave:

análisis dinámico, viento, sismo, integración directa, superposición modal

Resumen

Las torres autosoportadas son estructuras que requieren atención especial bajo las acciones dinámicas generadas por cargas de viento y sismo. Se pueden identificar tres enfoques para el análisis dinámico de estas estructuras: métodos estáticos equivalentes, métodos en el dominio de la frecuencia y métodos en el dominio del tiempo. El desarrollo de la computación en las últimas décadas ha facilitado las aplicaciones de los métodos de análisis dinámico complejos, como el método del dominio del tiempo, que pueden resolverse mediante técnicas de superposición modal o de integración directa. Dada la coexistencia en la literatura de ambas técnicas en el análisis de torres autosoportadas, el presente trabajo tiene como objetivo comparar la respuesta en términos de desplazamientos y reacciones de soporte, de una torre autosoportada bajo la acción de cargas dinámicas de viento y sismo, utilizando la superposición modal y la integración directa. Los resultados de la aplicación de ambas técnicas mostraron diferencias inferiores al 2% en los valores de las reacciones de apoyo y los desplazamientos de la torre. El procedimiento basado en la superposición modal es más eficiente ya que consume menos tiempo y memoria computacional.

Referencias

Aktas, G. and Karasin, A. (2014). Experimental confirmation for the validity of Ritz method in structural dynamic analysis. Journal of Theoretical and Applied Mechanics 52(4): 981-993. 10.15632/jtam-pl.52.4.981

Amiri, G.G., Barkhordari, M.A., Massah, S.R. and Vafaei, M.R. (2007a). Earthquake amplification factors for self-supporting 4-legged telecommunication towers. World Applied Sciences Journal 2(6), 635-643

Amiri, G.G., Massah, S.R. and Boostan, A. (2007b). Seismic response of 4-legged self-supporting telecommunication towers. International Journal of Engineering Transactions B: Applications 20(2): 107-126

An, Y., Quan, Y. and Gu, M. (2012). Field measurement of wind characteristics of Typhoon Muifa on the Shanghai World Financial Center. International Journal of Distributed Sensor Networks 893739. https://doi.org/10.1155/2012/893739

AS/NZS 1170.2 (2011). Structural design actions. Part 2: Wind actions. Australian/New Zeland Standard

Augusti, G., Bartoli, G., Borri, C., Gusella, V. and Spinelli, P. (1992). Wind load and response of broadcasting antennas: Three years of research work in cooperation with RAI. Journal of Wind Engineering and Industrial Aerodynamics 43(1), 2077-2088. https://doi.org/10.1016/0167-6105(92)90638-Q

Bentes, J., Menezes, R.C. and Riera, J.D. (2014). Dynamic response of guyed towers in transmission lines submitted to broken conductors. 9th International Conference on Structural Dynamics EURODYN 2014, Cunha et al. eds., Porto, Portugal

Cao, S. (2013). Strong winds and their characteristics. In Advanced Structural Wind Engineering. Tamura and Kareem eds., Springer, 1-28. https://doi.org/10.1007/978-4-431-54337-4_1

Chen, J. and Li, L. (2012). Investigation on dynamic response of steel tower structure under time-history wind load. Applied Mechanics and Materials 166-169: 699-707. http://dx.doi.org/10.4028/www.scientific.net/AMM.166-169.699

Chiu, A.N.L. and Taoka, G.T. (1973). Tower response to actual and simulated wind forces. Journal of the Structural Division 99(9): 1911-1929

Chopra, A.K. (2014). Dinámica de Estructuras. Prentice Hall, México

Clough, R.W. and Penzien, J. (1993). Dynamics of Structures. 2nd ed., McGraw-Hill, New York

Fu, J.Y., Wu, J.R., Xu, A., Li, Q.S. and Xiao, Y.Q. (2012). Full-scale measurements of wind effects on Guangzhou West Tower. Engineering Structures 35, 120-139. https://doi.org/10.1016/j.engstruct.2011.10.022

Gani, F. and Légeron, F. (2010). Dynamic response of transmission lines guyed towers under wind loading. Canadian Journal of Civil Engineering 37(3): 450-465. https://doi.org/10.1139/L09-160

Khedr, M. and McClure, G. (1999). Earthquake amplification factors for self-supporting telecommunication towers. Canadian Journal of Civil Engineering 26(2), 208-215. https://doi.org/10.1139/l98-059

Martín, P. (2014). Estudio analítico-experimental de torre autosoportada con presencia de antenas bajo la acción del viento. Tesis de Doctorado, Instituto Superior Politécnico José Antonio Echeverría

Martín, P. y Elena, V.B. (2012). Análisis sísmico de modelos cubanos de torres autosoportadas de telecomunicaciones. Revista Cubana de Ingeniería 3(2): 25-34

Matlab (2013). Matlab2013a. The MathWorks Inc. Natick, Massachusetts, USA

NC-285 (2003). Carga de viento. Método de cálculo. Oficina Nacional de Normalización, Cuba

PEER (2011). PEER strong motion database. Pacific Earthquake Engineering Research Center, Berkeley, USA

SAP2000 (2011). Computer program v14. Computers and Structures Inc., Berkeley, USA

Serrano, O.J.P., Mora, E.B. y Salazar, A.R. (2014). Simulación de la componente longitudinal del viento por representación espectral y el análisis dinámico en edificios de cortante. XIX Congreso Nacional de Ingeniería Estructural, Puerto Vallarta, Jalisco, México

Shinozuka, M. and Jan C.M. (1972). Digital simulation of random processes and its applications. Journal of Sound and Vibration 25(1): 111-128. https://doi.org/10.1016/0022-460X(72)90600-1

Solari, G. and Piccardo, G. (2001). Probabilistic 3-D turbulence modeling for gust buffeting of structures. Probabilistic Engineering Mechanics 16(1): 73-86. https://doi.org/10.1016/S0266-8920(00)00010-2

Sparling, B.F. (1995). The dynamic behaviour of guys and guyed masts in turbulent winds. PhD thesis, The University of Western Ontario, Canada

Taillon, J.Y., Légeron, F. and Prud'homme, S. (2012). Variation of damping and stiffness of lattice towers with load level. Journal of Constructional Steel Research 71, 111-118. https://doi.org/10.1016/j.jcsr.2011.10.018

Wilson, E.L., Farhoomand, I. and Bathe, K.J. (1972). Nonlinear dynamic analysis of complex structures. Earthquake Engineering & Structural Dynamics 1(3), 241-252. https://doi.org/10.1002/eqe.4290010305

Wilson, E.L. (2002). Three-dimensional static and dynamic analysis of structures. 3rd ed., Computer and Structures Inc., Berkeley, USA

Wilson, E.L., Yuan, M.W. and Dickens, J.M. (1982). Dynamic analysis by direct superposition of Ritz vectors. Earthquake Engineering & Structural Dynamics 10(6), 813-821. https://doi.org/10.1002/eqe.4290100606

Zhang, Z., Li, H., Li, G., Wang, W. and Tian, L. (2013). The numerical analysis of transmission tower-line system wind-induced collapsed performance. Mathematical Problems in Engineering 413275. https://doi.org/10.1155/2013/413275

Zhou, L. and Zheng, W.X. (2008). Three-dimensional analysis of thick plates by MLS-Ritz method. International Journal of Structural Stability and Dynamics 8(1): 77-101. https://doi.org/10.1142/S0219455408002569

Descargas

Publicado

2018-06-01

Número

Sección

Artículos

Cómo citar

Análisis dinámico de una torre autosoportada sujeta a cargas de viento y sismo. (2018). Obras Y Proyectos, 23, 78-86. https://doi.org/10.4067/s0718-28132018000100078