Time settlement evaluation of piled-raft systems supported on clayey soils in Bogotá D.C., using 3D FEM

Authors

  • Juan Sebastián Monzón Grupo de Investigación en Riesgo en Sistemas Naturales y Antrópicos, Facultad Ingeniería, Pontificia Universidad Javeriana, Colombia
  • Alejandro Varela Grupo de Investigación en Riesgo en Sistemas Naturales y Antrópicos, Facultad Ingeniería, Pontificia Universidad Javeriana, Colombia

DOI:

https://doi.org/10.4067/s0718-28132018000100006

Keywords:

Clays of Bogotá D.C, Total settlement, 3D finite elements, Piled-raft, Rocscience RS3

Abstract

This document presents the analyses of a piled-raft system foundation constructed on a typical stratigraphic profile of clays in Bogotá D.C. The stratigraphy was defined using 57 exploration records and 16 piezocone tests from geotechnical studies for the first line of the Metro projected in this city. A 4-layer average soil model was established and the geotechnical parameters for each layer were defined from USCS classification, unit weight, direct shear, unidimensional consolidation, unconfined compression and triaxial CU tests. Based on this geotechnical information, a 3D FEM analysis was performed for this study. 54 geometric combinations between length, diameter, separation between centres of vertical elements and raft thickness, were established to estimate the total settlements taking into account the construction process (300 days) and later on to 20 years for a 15 floors building without basements. In addition, total settlements were estimated using the methodologies of Equivalent Raft, Equivalent Pile, Poulos y Davis, and Poulos-Davis-Randolph to find the maximum number of piles needed to find the 20-year maximum settlement proposed by NSR-10 (2010) Title H (30 cm). Finally, the global construction cost analysis was performed for all the geometrical configurations and settlement methodologies proposed.

References

Bajad, S.P. and Sahu, R.B. (2009). Optimun design of piled raft in soft clay - a model study. Indian Geotechnical Society Conference, Guntuy, 131-134

Bhowmik, R. and Samanta, M. (2013). Numerical analysis of piled-raft foundation under vertical load in stone column improved soil. Proceedings of Indian Geotechnical Conference, Roorkee, 1-10

Cho, J., Lee, J.H., Jeong, S. and Lee, J. (2012). The settlement behavior of piled raft in clay soils. Ocean Engineering 53, 153-163. https://doi.org/10.1016/j.oceaneng.2012.06.003

Cooke, R.W. (1986). Piled raft foundations on stiff clays - a contribution to design philosophy. Géotechnique 36(2), 169-203. https://doi.org/10.1680/geot.1986.36.2.169

Cooke, R.W., Bryden Smith, D.W., Gooch, M.N. and Sillett, D.F. (1981). Some observations of the foundation loading and settlement of a multi-storey building on a piled raft foundation in London clay. Proceedings of the Institution of Civil Engineers 70(3), 433-460. https://doi.org/10.1680/iicep.1981.1783

Davids, A., Wongso, J., Popovic, D. and McFarlane, A. (2008). A Postcard from Dubai design and construction of some of the tallest buildings in the world. CTUBH 8th World Congress, Dubai, 3-5. https://doi.org/10.3850/9789628014194_0075

Desai, C.S., Zaman, M.M., Lightner, J.G. and Siriwardane, H.J. (1984). Thin-layer element for interfaces and joints. International Journal for Numerical and Analytical Methods in Geomechanics 8(1), 19-43. https://doi.org/10.1002/nag.1610080103

Elwakil, A.Z. and Azzam, W.R. (2016). Experimental and numerical study of piled raft system. Alexandria Engineering Journal 55(1), 547-560. https://doi.org/10.1016/j.aej.2015.10.001

Fattah, M.Y., Al-Mosawi, M.J. and Al-Zayadi, A. A. (2013). Time dependent behavior of piled raft foundation in clayey soil. Geomechanics and Engineering 5(1):17-36. https://doi.org/10.12989/gae.2013.5.1.017

GGS (2014). Empfehlungen des Arbeitskreises Numerik in der Geotechnik - EANG. German Geotechnical Society, Wiley-VCH Verlag GmbH, Germany

Hansbo, S. and Jendeby, L. (1983). A case study of two alternative foundation principles: conventional friction piling and creep piling. Väg-och Vattenbyggaren 7(8), 29-31

Ibáñez, L.O. (2017). Análisis de la influencia de la profundidad de cimentación en la disminución de asentamientos en losas de fundación combinadas con pilotes. Obras y Proyectos 22, 42-49. https://doi.org/10.4067/S0718-28132017000200042

Katzenbach, R., Arslan, U., Moorman, C. and Reul, O. (1998). Pile raft foundation: interaction between piles and raft. Darmstadt Geotechnics 4 (2), 279-296

Leung, Y.F., Soga, K., Lehane, B.M., and Klar, A. (2010). Role of linear elasticity in pile group analysis and load test interpretation. Journal of Geotechnical and Geoenvironmental Engineering 136(12), 1686-1694. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000392

Montaña, D. (2013). Características de compresibilidad y resistencia de arcillas típicas del depósito lacustre de Bogotá. Tesis de maestría, Escuela Colombiana de Ingeniería Julio Garavito, Bogotá, Colombia

Moya, J. y Rodríguez, J. (1987). El subsuelo de Bogotá y los problemas de cimentaciones. 8va Conferencia Panamericana de Mecánica de Suelos e Ingeniería de Fundaciones, Cartagena de Indias, Colombia, 197-264

NSR-10 (2010). Reglamento Colombiano de construcción sismo resistente. Asociación Colombiana de Ingeniería Sísmica, Colombia

Orozco, L.F. (2006). Asentamientos de fundaciones en la arcilla de Bogotá. IV Encuentro Nacional de Ingenieros de Suelos y Estructuras. Colombia

Palacio, J. (2015). Análisis comparativo de metodologías de diseño de sistemas de cimentación placa-pilote. Tesis de maestría, Escuela Colombiana de Ingeniería Julio Garavito, Bogotá, D.C.

Patil, J.D., Vasanvala, S.A. and Solanki, C.H. (2013). A study on piled raft foundation: state of art. International Journal of Engineering Research and Technology 2(8):1464-1470

Poulos, H.G. (2001). Piled raft foundations: design and applications. Géotechnique 51(2): 95-113. https://doi.org/10.1680/geot.2001.51.2.95

Poulos, H.G. and Davis, E.H. (1980). Pile foundation analysis and design. John Wiley & Sons

Randolph, M.F. (1994). Design methods for pile groups and piled rafts. 13th International Conference on Soil Mechanics and Geotechnical Engineering, New Delhi, vol. 5, 62-82

Reul, O. and Randolph, M.F. (2003). Piled rafts in overconsolidated clay: comparison of in situ measurements and numerical analyses. Géotechnique 53(3), 301-315. https://doi.org/10.1680/geot.2003.53.3.301

Small, J.C. and Liu, H.L.S. (2008). Time-settlement behaviour of piled raft foundations using infinite elements. Computers and Geotechnics 35(2): 187-195. https:/doi.org/10.1016/j.compgeo.2007.04.004

Tan, Y.C., Chow, C.M. and Gue, S.S. (2005). Piled raft with different pile length for medium-rise buildings on very soft clay. XVI International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, vol. 4, 2045-2048. https://doi.org/10.3233/978-1-61499-656-9-2045

Tomlinson, M. and Woodward, J. (2014). Pile design and construction practice. 6th edition, CRC Press

Downloads

Published

2018-06-01

Issue

Section

Articles

How to Cite

Time settlement evaluation of piled-raft systems supported on clayey soils in Bogotá D.C., using 3D FEM. (2018). Obras Y Proyectos, 23, 6-24. https://doi.org/10.4067/s0718-28132018000100006