Validation of advanced constitutive models for the mechanical behaviour of Brasilia's structured clay

Authors

DOI:

https://doi.org/10.4067/S0718-28132014000100005

Keywords:

triaxial tests, elastoplastic model, hypoplastic model, Brasilia's structured clays

Abstract

The majority of the classical constitutive models for soils does not take into account the influence of the soil 's structure and cementation. However, in the last decades these variables have been considered in various constitutive models to describe the mechanical behaviour of undisturbed soils. To include these variables it is necessary the development of structure laws able to model appropriately the material behaviour. In this paper, the behaviour of a structured and cemented clay from the city of Brasilia is analysed by means of triaxial tests and numerical simulations. To perform numerical simulations the models Cam Clay with structure, Subloading Cam Clay and Hypoplasticity with structure all of them combined with two structure laws, were chosen. The first two are based on elastoplasticity while the last one is based on hypoplasticity. As a result of the simulation process, advantages and drawbacks of each constitutive model were observed when compared with the test results. Finally, a discussion is presented in order to define the most appropriate model to simulate the mechanical behaviour of Brasilia 's clay.

References

Anagnostopoulos, A.G., Kalteziotis, N., Tsiambaos, G.K. and Kavvadas, M. (1991). Geotechnical properties of the Corinth canal marls. Geotechnical and Geological Engineering 9(1), 1-26. https://doi.org/10.1007/BF00880981

Baudet, B.A. and Stallebrass, S.E. (2004). A constitutive model for structured clays. Géotechnique 54(4), 269-278. https://doi.org/10.1680/geot.2004.54.4.269

Burland, J.B. (1990). On the compressibility and shear strength of natural clays. Géotechnique 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329

Camapum de Carvalho, J., Martines M., Moreira de Souza, N. e da Silva M. (2006). Processos Erosivos no Centro-Oeste Brasileiro. Universidade de Brasília (en portugués)

Cuccovillo, T. and Coop, M.R. (1999). On the mechanics of structured sands. Géotechnique 49(6), 741-760. https://doi.org/10.1680/geot.1999.49.6.741

Farias, M.M., Pedroso, D.M. and Nakai, T. (2009). Automatic substepping integration of the subloading tij model with stress path dependent hardening. Computers and Geotechnics 36, 537-548. https://doi.org/10.1016/j.compgeo.2008.11.003

Fuentes, W., Mendoza, C. and Lizcano, A. (2010). Evaluation of an extended viscohypoplastic model for structured soils. XV Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica, [DC-Room], Brasília, Brasil

Giraldo, R. e Farias, M. (2011). Validação experimental de um modelo simples para solos. VI INFOGEO - Simpósio Brasileiro de Aplicações de Informatica em Geotecnia, 1, 1

Guimarães, R. (2002). Análise das propriedades e comportamento de um perfil de solo laterítico aplicada ao estudo do desempenho de estacas escavadas. Tesis MSc, Universidade de Brasília (en portugués)

Helwany, S. (2007). Applied Soil Mechanics with ABAQUS Applications. 1st edition. John Wiley and Sons, Inc.

Kolymbas, D. (1977). Ein nichtlineares viskoplastisches Stoffgesetz für Boden. PhD thesis, Insitut für Boden und Felsmechanik, University of Karlsruhe, Germany (en alemán)

Krieg, S. (2000). Viskoses Bodenverhalten von Mudden, Seeton und Klei. PhD thesis, University of Karlsruhe, Germany (en alemán)

Lagioia, R. and Nova, R. (1995). An experimental and theoretical study of the behaviour of a calcarenite in triaxial compression. Géotechnique 45(4), 633-648

Leinenkugel, H.J. (1976). Deformation and strength behavior of cohesive soils experiments and their physical meaning. Tech. Rep. Heft 66, Institute of Soil and Rock Mechanics, University of Karlsruhe, Germany

Leroueil, S. and Vaughan, P.R. (1990). The general and congruent effects of structure in natural soils and weak rocks. Géotechnique 40(3), 467-488. https://doi.org/10.1680/geot.1990.40.3.467

Liu, M.D. and Carter, J.P. (2002). A structured Cam Clay model. Canadian Geotechnical Journal 39(6), 1313-1332. http://dx.doi.org/10.1139/T02-069

Liu, M.D. and Carter, J.P. (2006). A structured Cam Clay model. Research report N° R814, University of Sydney, Australia.

Liyanapathirana, S., Carter, J. and Airey, D. (2005). Numerical modeling of nonhomogeneous behaviour of structured soils in triaxial tests. International Journal of Geomechanics 5(1), 10-23. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:1(10)

Masín, D. (2006). Hypoplastic models for fine-grained soils. PhD thesis, Charles University, Prague, Czech Republic

Melfi, A.J. (1997). Lateritas e Processos de Laterização. Escola de Engenharia de São Carlos, Universidade de São Paulo (en portugués)

Mendoza, C.C. (2013). Experimental and numerical behaviour of deep foundations made up by "Alluvial Anker" type piles founded in a tropical soil of Brazil. PhD thesis, University of Brasília (in Portuguese)

Nakai, T. and Hinokio, M. (2004). A simple elastoplastic model for normally and over consolidated soils with unified material parameters. Soils and Foundations 44(2): 12-30

Nakai, T., Shahin, H.M., Kikumoto, M., Kyokawa, H. and Zhang, F. (2009). Simple and unified method for describing various characteristics of geomaterials - Influences of density, bonding, time effects and others. Journal of Applied Mechanics JSCE 12, 371- 382 (in Japanese)

Niemunis, A. (2008). Incremental Driver, user's manual. Karlsruhe Institute of Technology KIT

Niemunis, A. (2003). Extended hypoplastic models for soils. Institut für Grundbau und Bodenmechanik, Ruhr Universitat Bochum, Germany

Pedroso, D.M. (2006). Representação matemática do comportamento mecánico cíclico de solos saturados e não saturados. Tesis PhD, Universidade de Brasília (en portugués)

Roscoe, K.H., Schofield, A.N. and Wroth, C.P. (1958). On the yielding of soils. Géotechnique 8(1), 22-52. https://doi.org/10.1680/geot.1958.8.1.22

Roscoe, K.H., Schofield, A.N. and Thurairajah, A. (1963). Yielding of clays in states wetter than critical. Géotechnique 13(3), 211-240. https://doi.org/10.1680/geot.1963.13.3.211

Roscoe, K.H., and Burland, J.B. (1968). On the generalized stress-strain behavior of "wet clay". In Engineering Plasticity. Edited by J. Herman and F.A. Leckie. Cambridge University Press, 535-609

Sheng, D., Sloan S.W. and Yu, H.S. (2000). Aspects of finite element implementation of critical state models. Computational Mechanics 26(2), 185-196. https://doi.org/10.1007/s004660000166

Sorensen, K.K., Baudet, S. and Simpson, B. (2007). Influence of structure on the time-dependent behaviour of a stiff sedimentary clay. Géotechnique 57(1), 113-124. https://doi.org/10.1680/geot.2007.57.1.113

Tatsuoka, F., Santucci de Magistris, F., Hayano, K., Momoya, Y. and Koseki., J. (2000). Some new aspects of time effects on the stress and strain behavior of stiff geomaterials. Proceedings of the Second International Conference on Hard Soils - Soft Rocks, Napoli, Vol. 2, 1285-1371

Vatsala, A., Nova, R. and Murthy, B.R.S. (2001). Elastoplastic model for cemented soils. Journal of Geotechnical and Geoenvironmental Engineering 127(8), 679-687. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:8(679)

Wolffersdorff, P.A. (1996), A hypoplastic equation for granular materials with a predefined limit state surface. Mechanics of Cohesive-Frictional Materials 1(3), 251-271. https://doi.org/10.1002/(SICI)1099-1484(199607)1:3%3C251::AID-CFM13%3E3.0.CO;2-3

Whitlow, R. (2000). Basic soil mechanics. Prentice Hall, 4th ed.

Wu, W. (1992). Hypoplastizitãt als mathematisches Modell zum mechanischen Verhalten granularer Stoffe. PhD thesis, Insitut für Boden und Felsmechanik, University of Karlsruhe, Germany (en alemán)

Yan, W.M. and Li, X.S. (2011). A model for natural soil with bonds. Géotechnique 61(2), 95-106. https://doi.org/10.1680/geot.8.P.061

Downloads

Published

2014-06-01

Issue

Section

Articles

How to Cite

Validation of advanced constitutive models for the mechanical behaviour of Brasilia’s structured clay. (2014). Obras Y Proyectos, 15, 52-70. https://doi.org/10.4067/S0718-28132014000100005