Descriptive analyses of landslide processes in Bogotá

Authors

DOI:

https://doi.org/10.4067/S0718-28132015000200006

Keywords:

landslides in Bogotá, descriptive analysis of landslide occurrence, correlation ONI-landslides

Abstract

In order to understand the processes that trigger landslides and the factors that may influence their generation such as geomorphology and climatology, this paper presents a new database of landslide processes compiledfor Bogotá, constructedfrom technical reports elaborated by the Instituto Distrital de Gestión del Riesgo y Cambio Climático IDIGER (formerly known as FOPAE). This database includes 2208 landslide events that occurred between 1996 and 2013. Because of the many features described in the technical reports, it was necessary to categorize in a systematic way variables like soil type, type of movement, possible cause that triggered the event, ground cover, average inclination of the slope, and the volume of sliding material, in order to condense the largestpossible amount of information. The database allows to infer relationships between precipitation and the occurrence of landslides in Bogotá. Analysis of the database shows a strong relationship between monthly rainfall and monthly amount of landslides, marked by a bimodal regime with the maximum recorded occurrence of slides between April-May and November-December. The time series of slides shows a hint of relationship with the Oceanic Niño Index ONI series, since for some Niña periods (more rain) the amount of recorded landslides increases. In addition, the correlogram of the time series of landslides is calculated, showing that the occurrence of landslide events may be associated with the reactivation of events that previously took place (six months in the past).

References

Aleotti, P. (2004). A warning system for rainfall-induced shallow failures. Engineering Geology 73(3), 247-265. https://doi.org/10.1016/j.enggeo.2004.01.007

Bonnard, C. and Noverraz, F. (2001). Influence of climate change on large landslides: Assessment of long-term movements and trends. International Conference on Landslides: Causes, Impacts and Countermeasures, 121-138

Brardinoni, F. and Church, M. (2004). Representing the land-slide magnitude-frequency relation: Capilano River basin, British Columbia. Earth Surface Processes and Landforms 29(1), 115-124. https://doi.org/10.1002/esp.1029

Chau, K.T., Sze, Y.L., Fung, M.K., Wong, W.Y., Fong, E.L. and Chan, L.C.P. (2004). Landslide hazard analysis for Hong Kong using landslide inventory and GIS. Computers & Geosciences 30(4), 429-443. https://doi.org/10.1016/j.cageo.2003.08.013

Coe, J.A., Kinner, D.A. and Godt, J.W. (2008). Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado. Geomorphology 96(3), 270-297. https://doi.org/10.1016/j.geomorph.2007.03.017

Corominas, J. and Moya, J. (1999). Reconstructing recent landslide activity in relation to rainfall in the Llobregat river basin, Eastern Pyrenees, Spain. Geomorphology 30(1), 79-93

Dahal, R.K., Hasegawa, S., Masuda, T., and Yamanaka, M. (2006). Roadside slope failures in Nepal during torrential rainfall and their mitigation. Disaster mitigation of debrisflow, slope failures and landslides, (Interpraevent 2007), Universal Academy Press, Tokyo, 2, 503-514

Dai, F.C. and Lee, C.F. (2001). Frequency-volume relation and prediction of rainfall-induced landslides. Engineering Geology 59(3), 253-266. https://doi.org/10.1016/S0013-7952(00)00077-6

Dai, F.C. and Lee, C.F. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42(3), 213-228. https://doi.org/10.1016/S0169-555X(01)00087-3

DesInventar (2014). Inventory system of the effects of disasters. 29 de agosto 2014. http://www.desinventar.org/en/database

Glade, T. (1998). Establishing the frequency and magnitude of landslide-triggering rainstorm events in New Zealand. Environmental Geology 35(2-3), 160-174. https://doi.org/10.1007/s002540050302

Glade, T., Crozier, M. and Smith, P. (2000). Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical "antecedent daily rainfall model". Pure and Applied Geophysics 157(6-8), 1059-1079. https://doi.org/10.1007/s000240050017

Gray, D.H. and Leiser, A.T. (1982). Biotechnical slope protection and erosion control. Van Nostrand Reinhold Company Inc.

Greenway, D.R. (1987). Vegetation and slope stability. In Slope stability: geotechnical engineering and geomorphology, edited by Anderson and KS

Guzzetti, F., Peruccacci, S., Rossi, M. and Stark, C.P. (2007). Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and Atmospheric Physics 98(3-4), 239-267. https://doi.org/10.1007/s00703-007-0262-7

Guzzetti, F., Peruccacci, S., Rossi, M. and Stark, C.P. (2008). The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5(1), 3-17. https://doi.org/10.1007/s10346-007-0112-1

IDEAM (2005). Estudio de la clasificación climática de Bogotá y cuenca alta del Río Tunjuelo. Instituto de Hidrología, Meteorología y Estudios Ambientales-IDEAM y Fondo de Prevención y Atención de Emergencias, 116 p.

Imaizumi, F., Sidle, R.C. and Kamei, R. (2008). Effects of forest harvesting on the occurrence of landslides and debris flows in steep terrain of central Japan. Earth Surface Processes and Landforms 33(6), 827-840. https://doi.org/10.1002/esp.1574

Iverson, R.M. (2000). Landslide triggering by rain infiltration. Water Resources Research 36(7):1897-1910. https://doi.org/10.1029/2000WR900090

Iverson, R.M. and Denlinger, R.P. (2001). Flow of variably fluidized granular masses across three-dimensional terrain 1. Coulomb mixture theory. Journal of Geophysical Research 106(B1):537-552. https://doi.org/10.1029/2000JB900329

Jiménez-Perálvarez, J.D., Irigaray, C., El Hamdouni, R. and Chacón, J. (2010). Landslide susceptibility mapping in a semi-arid mountain environment: an example from the southern slopes of Sierra Nevada (Granada, Spain). Bulletin of Engineering Geology and the Environment 70(2), 265-277. https://doi.org/10.1007/s10064-010-0332-9

Li, C., Ma, T., Zhu, X. and Li, W. (2011). The power-law relationship between landslide occurrence and rainfall level. Geomorphology 130(3), 221-229

Luna, B.Q., Remaítre, A., van Asch, T.W., Malet, J.P. and van Westen, C.J. (2012). Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Engineering Geology 128, 63-75. https://doi.org/10.1016/j.enggeo.2011.04.007

Moreiras, S.M. (2005). Climatic effect of ENSO associated with landslide occurrence in the Central Andes, Mendoza Province, Argentina. Landslides 2(1), 53-59. https://doi.org/10.1007/s10346-005-0046-4

Moya Barrios, J. y Rodríguez, J.A. (1987). El subsuelo de Bogotá y los problemas de cimentaciones. En: Memorias del VIII Congreso Panamericano de Mecánica de Suelos e Ingeniería de Fundaciones. Sociedad Colombiana de Geotecnia.

Moya Sánchez, J., Corominas Dulcet, J., Mavrouli, O.C. y Copons Llorens, R. (2013). Aproximación probabilística al número y tamaño de bloques en desprendimientos con fragmentación. VIII Simposio Nacional sobre Taludes y Laderas Inestables, Palma de Mallorca, 1107-1118

NOAA (2014). Changes to Oceanic Niño Index (ONI). http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml (29 de agosto 2014)

Ouyang, C., He, S., Xu, Q., Luo, Y. and Zhang, W. (2013). A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain. Computers & Geosciences 52, 1-10. https://doi.org/10.1016/j.cageo.2012.08.024

Pradhan, B., Lee, S. and Buchroithner, M. (2010). A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses. Computers, Environment and Urban Systems 34, 216-235. https://doi.org/10.1016/j.compenvurbsys.2009.12.004

Pudasaini, S.P., Wang, Y. and Hutter, K. (2005). Modelling debris flows down general channels. Natural Hazards and Earth System Science 5(6), 799-819. https://doi.org/10.5194/nhess-5-799-2005

Rickenmann, D., Laigle, D.M.B.W., McArdell, B.W. and Hübl, J. (2006). Comparison of 2D debris-flow simulation models with field events. Computational Geosciences 10(2), 241-264. https://doi.org/10.1007/s10596-005-9021-3

Shrestha, B.B., Nakagawa, H., Kawaike, K. and Baba, Y. (2008). Numerical simulation on debris-flow deposition and erosion processes upstream of a check dam with experimental verification. Annual of the Disaster Prevention Research Institute 51(0), 613-623

Suárez, J. (1998). Deslizamientos y estabilidad de taludes en zonas tropicales. Ed. Universidad Industrial de Santander, Bucaramanga, Colombia

Trauth, M.H., Bookhagen, B., Marwan, N. and Strecker, M.R. (2003). Multiple landslide clusters record Quaternary climate changes in the northwestern Argentine Andes. Palaeogeography, Palaeoclimatology, Palaeoecology 194(1), 109-121. https://doi.org/10.1016/S0031-0182(03)00273-6

Wang, C., Li, S. and Esaki, T. (2008). GIS-based two-dimensional numerical simulation of rainfall-induced debris flow. Natural Hazards and Earth System Science 8(1), 47-58

Wieczorek, G.F. (1996). Landslide triggering mechanisms. In Landslides: Investigation and Mitigation, eds. Turner and Shuster. Transportation Research Board - National Research Council, Special Report 247, 76-90

Zhou, C.H., Lee, C.F., Li, J. and Xu, Z.W. (2002). On the spatial relationship between landslides and causative factors on Lantau Island, Hong Kong. Geomorphology 43(3), 197-207. https://doi.org/10.1016/S0169-555X(01)00130-1

Downloads

Published

2015-12-01

Issue

Section

Articles

How to Cite

Descriptive analyses of landslide processes in Bogotá. (2015). Obras Y Proyectos, 18, 63-75. https://doi.org/10.4067/S0718-28132015000200006