Numerical modelling and diagnostic techniques of hydraulic fractures based on their inlet behaviour

Authors

  • Cristóbal Valderrama Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de Chile, Chile
  • Esteban Sáez Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de Chile, Chile https://orcid.org/0000-0001-5433-0388

DOI:

https://doi.org/10.4067/S0718-28132015000200005

Keywords:

hydraulic fracturing, numerical modelling, diagnostic technique, mine pre-conditioning

Abstract

In the current conditions of mines exploited by caving methods, pre-conditioning by hydraulic fracturing has proven to have positive impacts such as the decrease in the block’s size related to the primary fragmentation. An essential part of the pre-conditioning design is the estimation of the hydraulic fractures length. On the other hand, the energy dissipated by the viscous flow imide the fracture modifies the propagation characteristics of these fractures, making difficult the use of standard methods of fracture mechanics in numerical modelling. For this reason, for plain-strain and axisymmetric cases we propose a numerical resolution strategy, which can be used for any set of hydraulic fracturing parameters. These criteria are based on the pressure and opening values at the inlet, and additionally on their length (or radius). Furthermore, this last characteristic, allow us to modify the propagation criteria in order to generate diagnostic tools for the estimation of fractures dimensions in the field.

References

Abou-Sayed, A.S. (1994). Safe injections pressures for disposing of liquid wastes: a case study for deep well injection. Proceedings of the Second SPE/ISRM Rock Mechanics in Petroleum Engineering. Balkema, 769-776. https://doi.org/10.2118/28126-MS

Adachi, J. (2001). Fluid driven fracture in permeable rock. PhD thesis, University of Minnesota

Adachi, J., Siebrits, E., Peirce, A. and Desroches, J. (2007). Computer simulation of hydraulic fractures. International Journal of Rock Mechanics and Mining Sciences 44: 739-757. https://doi.org/10.1016/j.ijrmms.2006.11.006

Akulich, A.V and Zvyagin, A.V. (2008). Numerical simulation of hydraulic fracture crack propagation. Moscow University Mechanics Bulletin 63(1), 6-12. https://doi.org/10.1007/s11971-008-1002-4

Araneda, O. and Sougarret, A. (2007). Lessons learned in cave mining: El Teniente 1997-2007. Proceedings ofthe First International Symposium on Block and Sub-level Caving. Cape Town

Bunger, A., Zhang, X. and Jeffrey, R. (2012). Parameters affecting the interaction among closely spaced hydraulic fractures. SPE Journal 17(1), 292-306. https://doi.org/10.2118/140426-PA

Crouch, S.L. and Starfield, A.M. (1983). Boundary element methods in solid mechanics. London, George Allen & Unwin

Desroches, J., Detournay, E., Lenoach, B., Papanastasiou, P., Pearson, J.R.A., Thiercelin, M. and Cheng, A. (1994). The crack tip region in hydraulic fracturing. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 447(1929), 39-48. https://doi.org/10.1098/rspa.1994.0127

Desroches, J. and Thiercelin, M. (1993). Modelling the propagation and closure of micro-hydraulic fractures. International Journal of Rock Mechanics Mining Sciences and Geomechanics Abstracts 30(7), 1231-1234. https://doi.org/10.1016/0148-9062(93)90100-R

Detournay, E. (2004). Propagation regimes of fluid-driven fractures in impermeable rocks. International Journal of Geomechanics 4(1), 35-45. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:1(35)

Garagash, D. and Detournay, E. (2005). Plane-strain propagation of a fluid-driven fracture: small toughness solution. Journal of Applied Mechanics 72(6), 916-928. https://doi.org/10.1115/1.2047596

Garagash, D. (2006). Plane-strain propagation of a fluid-driven fracture during injection and shut-in: asymptotics of large toughness. Engineering Fracture Mechanics 73(4), 456-481. https://doi.org/10.1016/j.engfracmech.2005.07.012

Gordeliy, E. and Detournay, E. (2011). Displacement discontinuity method for modeling axisymmetric cracks in an elastic half-space. International Journal of Solids and Structures 48(19): 2614-2629. https://doi.org/10.1016/j.ijsolstr.2011.05.009

Haimson, B.C. and Cornet, F.H. (2003). ISRM suggested methods for rock stress estimation - Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). International Journal of Rock Mechanics & Mining Sciences 40(7-8), 1011-1020. https://doi.org/10.1016/j.ijrmms.2003.08.002

Jeffrey, R.G., Settari, A., Mills, K.W., Zhang, X. and Detournay, E. (2001). Hydraulic fracturing to induce caving: fracture model development and comparison to field data. Proceedings of the 38th US Rock Mechanics Symposium. Washington DC, USA, 251-259

Moss, A. (2011). Block caving. Presentation at the 20th BMO Capital Markets Global Metals & Mining Conference. Miami, USA

Moss, A.V and Maron, I.A. (1987). Computational Mathematics: worked examples and problems with elements of theory. 4th ed. Moscow: Mir Publishers

Savistski, A. and Detournay, E. (2002). Propagation of a penny-shaped fluid driven fracture in an impermeable rock: asymptotic solutions. International Journal of Solids and Structures 39(26), 6311-6337. https://doi.org/10.1016/S0020-7683(02)00492-4

Sneddon, I.N. (1951). Fourier Transforms. New York, McGraw-Hill

Sneddon, I.N. and Lowengrub, M. (1969). Crack problems in the classical theory of elasticity. New York, John Wiley & Sons

Spence, D.A. and Turcotte, D.L. (1985). Magma-driven propagation of cracks. Journal of Geophysical Research: Solid Earth 90(B1), 575-580. https://doi.org/10.1029/JB090iB01p00575

Valkó, P. and Economides, M.J. (1995). Hydraulic fracture mechanics. John Wiley & Sons, Chichester, UK

van As, A., Jeffrey, R.G., Chacón, E. and Barrera, V (2004). Preconditioning by hydraulic fracturing for block caving in a moderately stressed naturally fractured orebody. Proceedings of MassMin 2004. Santiago, Chile, 535-541

Downloads

Published

2015-12-01

Issue

Section

Articles

How to Cite

Numerical modelling and diagnostic techniques of hydraulic fractures based on their inlet behaviour. (2015). Obras Y Proyectos, 18, 56-62. https://doi.org/10.4067/S0718-28132015000200005