Statistical analysis of heavy vehicle operating speed in ascending slopes

Authors

  • Tomás Echaveguren Departamento de Ingeniería Civil, Universidad de Concepción, Chile https://orcid.org/0000-0003-1632-5988
  • Daniela Arellano Departamento de Ingeniería Civil, Universidad de Concepción, Chile

DOI:

https://doi.org/10.4067/S0718-28132015000200001

Keywords:

operating speed, heavy vehicle, ascending slope

Abstract

The truck speed profiles in ascending slopes are used to design climbing lanes. The standards consider a vehicle with typical weight-to-power ratio, uniform slopes up to 8% and slope lengths of 12 km. The speed profile is obtained equating the forces opposed to the movement and the forces provided by the truck engine. Experiments conducted in Germany show that the actual speed profiles are different from that of theoretical speed profiles. Therefore, it is relevant to study in the field the truck speed behaviour in ascending slopes. This paper presents an empirical study of truck speed profiles in ascending slopes. The study characterizes and compares measured speed profiles with a theoretical model used in the Chilean geometric design standards. A set of 24 test sections, with slopes between 2% and 13% and lengths between 0.2 and 2.4 km were used. 70 speed profiles using a kinematic GPS device were obtained. Data were corrected using the Kalman filter and smoothed using non-parametric regression to obtain continuous speed profiles. The entrance speed, the maximum and minimum speed and the shape of the speed profiles were statistically analysed as well as the relationship between these parameters and the parameters used in the Chilean standard. It is concluded that the theoretical model overestimates the speed reduction in the first part of the slope, it does not consider the acceleration at the end of the slope and that the trucks not always reduce the speed up to the crawl speed.

References

AASHTO (2011). A Policy on Geometric Design of Highways and Streets. American Association of State Highway and Transportation Officials, USA

Archilla, A. and Fernández de Cieza, A. (1996). Truck performance on Argentinean highways. Transportation Research Record 1555, 114-123. https://doi.org/10.1177/0361198196155500115

AUSTROADS (2009). Guide to Road Design Part 3: Geometric Design. Association of Australian and New Zealand Road Transport and Traffic Authorities, Australia

Che-Puan, O. (2004). Driver’s car following headway on single carriageway roads. Journal Kejuruteraan Awam 16(2), 15 - 27. https://doi.org/10.11113/mjce.v16.15667

DGC (1999). Norma 3.1-IC: Características geométricas: Trazado. Dirección General de Carreteras. Ministerio de Fomento, España

Echaveguren T. y Vargas, S. (2007). Metodología de análisis y diseño de lechos de frenado. Revista de Ingeniería de Construcción 22(3), 175-184. https://doi.org/10.4067/S0718-50732007000300004

Echaveguren, T., Sepúlveda, P. y Vargas-Tejeda, S. (2011). Evaluación de precisión de mediciones de velocidad de operación en carreteras obtenidas con GPS. XV Congreso Chileno de Ingeniería de Transporte, Artículo #91, Santiago, Chile

Echaveguren, T., Tudela, A. and Fonseca, C. (2013). Assessment of smoothing techniques applied to speed profiles measured with GPS RTK. 13th World Conference on Transport Research, Rio de Janeiro, Brasil

Fitch, J.W. (1994). Motor truck engineering handbook. 4th ed. SAE, USA

Gaziz, D.C., Hermán, R. and Rothery, R.W. (1961). Nonlinear follow-the-leader models of traffic flow. Operations Research 9(4), 545-567. https://www.jstor.org/stable/167126

Gillespie, T.D. (1985). Methods for predicting truck speed loss on grades. Report UMTRI - 85-39/1. University of Michigan Transport Research Institute, USA

INVIAS (2008). Manual de Diseño Geométrico, Instituto Nacional de Vías. Ministerio de Transportes. Colombia

Lan, Ch-J. and Menendez, M. (2003). Truck speed profile models for critical length of grade. Journal of Transportation Engineering 129(4), 408-419. https://doi.org/10.1061/(ASCE)0733-947X(2003)129:4(408)

Lee, S. and Lee, D. (2000). Validation of the 10 MHP rule in highway design consistency procedure. Proceedings of 2nd International Symposium on Highway Geometric Design, Germany, 364-376

MOP (2010). Instrucciones y Criterios de Diseño. Manual de Carreteras, Volumen 3. Ministerio de Obras Públicas, Chile

Racelogic (2008). VBOX Mini User Guide. UK

Rakha, H., Lucic, I., Demarchi, S.H., Setti, J.R. and Van Aerde, M. (2001). Vehicle dynamics model for predicting maximum truck acceleration levels. Journal of Transportation Engineering 127(5), 418-425. https://doi.org/10.1061/(ASCE)0733-947X(2001)127:5(418)

Rakha, H. and Lucic, I. (2002). Variable power vehicle dynamics model for estimating truck accelerations. Journal of Transportation Engineering 128(5), 412-419. https://doi.org/10.1061/(ASCE)0733-947X(2002)128:5(412)

Rakha, H. and Yu, B. (2004). Truck performance curves reflective of truck and pavement characteristics. Journal of Transportation Engineering 130(6), 753-767. https://doi.org/10.1061/(ASCE)0733-947X(2004)130:6(753)

Verweij, C.A. (2000). Evaluating truck speeds on vertical alignments. Proceedings of 2nd International Symposium on Highway Geometric Design, Germany, 486-498

TRB (2000). Highway Capacity Manual, Transportation Research Board, Washington D.C. USA

Wong, J.Y. (2001). Theory of ground vehicles. 3rd ed. Wiley, New York

Wolshon, B. and Hatipkarasulu, Y. (2000). Results of car following analyses using global positioning system. Journal of Transportation Engineering 126(4), 324-331. https://doi.org/10.1061/(ASCE)0733-947X(2000)126:4(324)

Downloads

Published

2015-12-01

Issue

Section

Articles

How to Cite

Statistical analysis of heavy vehicle operating speed in ascending slopes. (2015). Obras Y Proyectos, 18, 6-18. https://doi.org/10.4067/S0718-28132015000200001