Wave speed calculation for water hammer analysis

Authors

  • John Twyman Twyman Ingenieros Consultores, Pasaje Dos 362, Rancagua, Chile

DOI:

https://doi.org/10.4067/S0718-28132016000200007

Keywords:

wave speed, water hammer, Courant number

Abstract

In order to accurately solve the water hammer problem using the Method of the Characteristics MOC is necessary to fulfil with the so-called Courant condition which establishes mandatorily that Cn = f(a) = 1 in each pipeline of the system, where a is the wave speed. The value of Cn is dependant of a whose value depends in turn on the fluid properties (density, bulk modulus) and physical characteristics of each pipeline (elasticity modulus, diameter, wall thickness, supporting condition). Because water distribution systems usually has many different pipes, and therefore, many different wave speeds, it can be said that fulfil with Cn = 1 in each pipeline is a very difficult task, more when the solution by MOC needs a common time step At for all pipe sections of the system. A way of solution to this problem is applying the method of the wave-speed adjustment that involves modifying the value of a in each pipe section in a certain percentage up to obtain Cn = 1. With this procedure optimum results are guaranteed in numerical terms, but it is possible to say the same in physical terms? The question which arises is: what parameters within the formula of a must (or can) be changed without exceeding the characteristic values of the component material of the pipes?. This work shows that in some cases the wave speed modification can significantly alter the value of the parameters that define a, leading to values that can be physically inconsistent, fictitious or without practical application.

References

Chaudhry, M.H. (1979). Applied hydraulic transients. Van Nostrand Reinhold, New York

Chaudhry M.H. and Hussaini M.Y. (1985). Second-order accurate explicit finite-difference schemes for waterhammer analysis. Journal of Fluid Engineering 107(4), 523-529. https://doi.org/10.1115/1.3242524

Del Valle, V (2010). Fluidos. Apuntes editorial Universidad Tecnológica Nacional, Tucumán, Argentina

Ghidaoui M.S. and Karney B.W. (1994). Equivalent differential equations in fixed-grid characteristics method. Journal of Hydraulic Engineering 120 (10), 1159-1175. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:10(1159)

Ghidaoui, M.S., Zhao, M., McInnis, D.A. and Axworthy, D.H. (2005). A review of water hammer theory and practice. Applied Mechanics Review 58(1), 49-76. https://doi.org/10.1115/1.1828050

Goldberg, D.E. and Wylie, E.B. (1983). Characteristics method using time-line interpolations. Journal of Hydraulic Engineering 109(5), 670-683. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:5(670)

Greaves, G.N., Greer, A.L., Lakes, R.S. and Rouxel, T. (2011). Poisson’s ratio and modern materials. Nature Materials 10(11), 823-837. https://doi.org/10.1038/nmat3134

Karney B.W. and Ghidaoui M.S. (1997). Flexible discretization algorithm for fixed-grid MOC in pipelines. Journal of Hydraulic Engineering 123 (11), 1004-1011. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:11(1004)

Larock, B.E., Jeppson, R.W. and Watters, G.Z. (2000). Hydraulics of pipeline systems. CRC Press, Boca Raton, Florida, USA

Martínez, P. y Azuaga, M. (1997). Medición del módulo de elasticidad de Young. Apuntes laboratorio IV, Departamento de Física, UBA

Pierre, B. (2009). Pressure waves in pipelines and impulse pumping: physical principles, model development and numerical simulation. Doctoral thesis, Norwegian University of Science and Technology, Trondheim

Skalak, R. (1955). An extension of the theory of water hammer. Tech. Report No. 15, Columbia University

Twyman, J., Twyman, C. y Salgado, R. (1997). Optimización del método de las características para el análisis del golpe de ariete en redes de tuberías. XIII Congreso Chileno de Ingeniería Hidráulica, Universidad de Santiago de Chile, 53-62

Watters, G.Z. (1984). Analysis and control of unsteady flow in pipelines. 2nd edition, Butterworth-Heinemann, USA

Wood, D.J., Lingireddy, S., Boulos, P.F., Karney, B.W. and McPherson, D.L. (2005). Numerical methods for modeling transient flow in distribution systems. Journal of the American Water Works Association 97 (7), 104-115. https://doi.org/10.1002/j.1551-8833.2005.tb10936.x

Wylie, E.B. and Streeter, VL. (1978). Fluid transients. McGraw-Hill, USA

Downloads

Published

2016-12-01

Issue

Section

Articles

How to Cite

Wave speed calculation for water hammer analysis. (2016). Obras Y Proyectos, 20, 86-92. https://doi.org/10.4067/S0718-28132016000200007