Numerical modelling of the formation and instability of blocks around the Monte Seco tunnel excavated in a discontinuous rock mass

Authors

  • Sergio Villalobos Departamento de Ingeniería Geotécnica, Escola Politécnica da Universidade de São Paulo, Brasil - OITEC Geotecnia Ltda.,Chile
  • Pedro Pazzoto Cacciari Departamento de Ingeniería Geotécnica, Escola Politécnica da Universidade de São Paulo, Brasil https://orcid.org/0000-0002-3120-7261
  • Marcos Massao Futai Departamento de Ingeniería Geotécnica, Escola Politécnica da Universidade de São Paulo, Brasil https://orcid.org/0000-0002-4969-3085

DOI:

https://doi.org/10.4067/S0718-28132017000100007

Keywords:

tunnel in rock, block/wedge, fracture systems, foliation plane, FEM, DFN

Abstract

Geotechnical analysis of tunnels in complex geostructural environments requires an advanced understanding of the inter-block structure effect on rock mass behaviour, such as joints and fractures systems, bedding and foliation planes, among other discontinuity types. The conventional approach for preliminary geotechnical analysis of tunnels is based on a continuous-equivalent system representation of rock mass, i.e. without explicit consideration of systematic discontinuity systems. However, to obtain a closer to reality results ofthe rock mass expected behaviour, geostructural data should be includedfrom the initial stage of numerical modelling for geotechnical analysis. The Monte Seco tunnel in Brazil, is used as a case study to analyze the implications of the discontinuity systems inclusion and degradation of mechanical properties, on the underground excavations stability. Based on the valuable geological engineering information from the TUNELCON project, numerical models with twodimensional DFN systems were developed. The case study demonstrates the importance of considering in detail the geo-structural data in numerical models from early stages of the project, thus achieving results that resemble in a better way to the actual behaviour that have the excavations during the construction and operation stages.

References

Baecher, G.B., Lanney, N.A. and Einstein, H.H. (1977). Statistical description of rock properties sampling. 18th US Symposium on Rock Mechanics

Bandis, S., Lumsden, A.C. and Barton, N.R. (1981). Experimental studies of scale effects on the shear behaviour of rock joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 18(1), 1-21. https://doi.org/10.1016/0148-9062(81)90262-X

Barrios, B. (2014). Caracterização da rugosidade. Relatório de Iniciação Cientifica, Escola Politécnica da Universidade de São Paulo

Barton, N., Bandis, S. and Bakhter, K. (1985). Strength, deformation and conductivity of rockj oints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 22(3), 121-140. https://doi.org/10.1016/0148-9062(85)93227-9

Barton, N. and Choubey, V. (1977). The shear strength of rock joints in theory and practice. Rock Mechanics & Rock Engineering 10(1), 1-54. https://doi.org/10.1007/BF01261801

Bieniawski, Z.T. and Bernede, M.J. (1979). Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts 16(2), 138-140. https://doi.org/10.1016/0148-9062(79)91451-7

Cacciari, P (2014). Estudo de um túnel em maciço rochoso fraturado por investigação geológico - geotécnica e analise pelo método dos elementos distintos. Tesis MSc, Escola Politécnica da Universidade de São Paulo

Cacciari, P. and Futai, M. (2015). Modelling a railway rock tunnel using terrestrial laser scanning and the distinct element method. South American Rock Mechanics Symposium, ISRM Specialized Conference, Buenos Aires, Argentina, 101-108

Cacciari, P. and Futai, M. (2016a). Mapping and characterization of rock discontinuities in a tunnel using 3D terrestrial laser scanning. Bulletin of Engineering Geology and the Environment 75(1), 223-237. https://doi.org/10.1007/s10064-015-0748-3

Cacciari, P. and Futai, M. (2016b). Integrating terrestrial laser scanning and discrete fracture network approaches for tunnel modelling in fractured rock masses. VII Brazilian Symposium on Rock Mechanics, ISRM Specialized Conference, Belo Horizonte, Brazil

Call, R.D., Savely, J.P. and Nicholas, D.E. (1976). Estimation of joint set characteristics from surface mapping data. 17th US Symposium on Rock Mechanics, 2B2-1-9

Diederichs, M. (2007). Mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling. Canadian Geotechnical Journal 44(9), 1082-1116

Elmo, D., Liu, Y. and Rogers, S. (2014). Principles of discrete fracture network modelling for geotechnical applications. First International DFNE Conference, Vancouver, Canada, paper 238

Hoek, E., Carranza-Torres, C. and Corkum, B. (2002). Hoek-Brown criterion - 2002 edition. 5th North American Rock Mechanics Symposium and the 17th Tunnelling Association of Canada Conference NARMS-TAC, Toronto, 1, 267-273

Hasui, Y., Carneiro, C.D.R., Almeida, F.D. and Bartorelli, A. (2012). Geologia do Brasil. São Paulo, Beca

Ito, W. (2016). Contribuição ao estudo de instabilidade em tuneis não revestidos da estrada de ferro Vitória-Minas através da teoria dos blocos-chave e caracterização da rocha através de ensaios de laboratório e campo. Tesis MSc, Escola Politécnica da Universidade de São Paulo

Kulatilake, P.H.S.W. and Wu, T.H. (1984). Estimation of mean trace length of discontinuities. Rock Mechanics & Rock Engineering 17(4), 215-232

McMahon, B. (1974). Design of rock slopes against sliding on preexisting surface. 3rd International Symposium on Rock Mechanics, 803-808

Monticelli, J. (2014). Contribuição ao conhecimento dos condicionantes geológicos - geotécnicos do túnel Monte Seco. Relatório de Iniciação Cientifica, Escola Politécnica da Universidade de São Paulo

Monticelli, J., Cacciari, P., Susuki, S. e Futai, M. (2014). Correlação entre índices físicos e analise petrográfica na determinação do grau de alteração de um gnaisse. VI Brazilian Symposium on Rock Mechanics, ISRM Specialized Conference, Goiania, Brazil

Priest, S.D. and Hudson, J.A. (1981). Estimation of discontinuity spacing and trace length using scanline surveys. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts 18(3), 183-197. https://doi.org/10.1016/0148-9062(81)90973-6

RS2 (2015). Finite element analysis for excavations and slopes software. Version 8.0, Rocscience Inc., Toronto

Ulusay, R. (2015). The ISRM suggested methods for rock characterization, testing and monitoring: 2007-2014. International Society of Rock Mechanics ISRM. Springer

Villaescusa, E. and Brown, E.T. (1992). Maximum likelihood estimation of joint size from trace length measurements. Rock Mechanics & Rock Engineering 25(2), 67-87. https://doi.org/10.1007/BF01040513

Zhang, L. and Einstein, H.H. (2000). Estimating the intensity of rock discontinuities. International Journal of Rock Mechanics & Mining Sciences 37(5), 819-837. https://doi.org/10.1016/S1365-1609(00)00022-8

Downloads

Published

2017-06-01

Issue

Section

Articles

How to Cite

Numerical modelling of the formation and instability of blocks around the Monte Seco tunnel excavated in a discontinuous rock mass. (2017). Obras Y Proyectos, 21, 54-64. https://doi.org/10.4067/S0718-28132017000100007