Laponite: a nanotechnology that retards liquefaction

Authors

  • Felipe Ochoa-Cornejo Departamento de Ingeniería Civil, Universidad de Chile, Chile https://orcid.org/0000-0002-0958-1409
  • Sergio Muñoz Departamento de Ingeniería Civil, Universidad de Chile, Chile

DOI:

https://doi.org/10.4067/S0718-28132017000100001

Keywords:

Laponite, Bentonite, nanomaterials, sand, liquefaction

Abstract

Earthquake induced liquefaction of loose sand deposits has caused significant damage in severe seismic events in Chile (Valdivia 1960, Valparaíso 1985, Maule 2010) and in other countries (New Zealand 2010, Japón 2011). This requires the development of soil improvement methods to increase the liquefaction resistance of these deposits, particularly in proximity to existing structures, where traditional approaches relying on densification may not work. This paper presents an experimental study that explores the use of Laponite, a synthetic nano-clay withparticle diameter ten times smaller than Bentonite, for treating liquefiable soils. The effect of the presence of a small amount of laponite (1% by dry mass of the sand) on the liquefaction resistance of clean sand specimens with relative density in the 15-25% range is studied through laboratory triaxial cyclic tests. The addition of 1% Laponite leads to a significant increase in liquefaction resistance, with respect to the clean sand, with the number of cycles to liquefaction increasing by approximately two orders of magnitude under the same cyclic stress ratio. This is comparable to the effect recently reportedfor Bentonite, but with much smaller addition of the nano-clay. The study addresses the mechanisms that explain the improvement based on the thixotropic fluid formed in the sand pore space.

References

Bonn, D., Kellay, H., Tanaka, H., Wegdam, G. and Meunier, J. (1999). Laponite: What is the difference between a gel and a glass?. Langmuir 15(22), 7534-7536

Clarke, J.P. (2008). Investigation of time-dependent rheological behavior of Sodium Pyrophosphate-Bentonite suspensions. MSc thesis, Purdue University, West Lafayette, Indiana

El Howayek, A. (2011). Characterization, rheology and microstructure of laponite suspensions. MSc thesis, Purdue University, West Lafayette, Indiana

El Mohtar, C.S., Bobet, A., Drnevich, V.P., Johnston, C.T. and Santagata, M.C. (2014). Pore pressure generation in sand with bentonite: from small strains to liquefaction. Géotechnique 64(2), 108-117. https://doi.org/10.1680/geot.12.P.169

El Mohtar, C.S., Bobet, A., Santagata, M.C., Drnevich, V.P. and Johnston, C.T. (2013). Liquefaction mitigation using bentonite suspensions. Journal of Geotechnical and Geoenvironmental Engineering 139(8), 1369-1380. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000865

Gallagher, P.M. and Mitchell, J.K. (2002). Influence of colloidal silica grout on liquefaction potential and cyclic undrained behavior of loose sand. Soil Dynamics and Earthquake Engineering 22(9), 1017-1026. https://doi.org/10.1016/S0267-7261(02)00126-4

Ishihara, K. (1993). Liquefaction and flow failure during earthquakes. Géotechnique 43(3), 351-415. https://doi.org/10.1680/geot.1993.43.3.351

Ishihara, K. and Koseki, J. (1989). Discussion On the cyclic shear strength of fines containing sands. Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering, Rio de Janiero, Brazil, 101-106

Koester, J.P. (1994). The influence of fines type and content on cyclic strength. Proceedings of the ASCE National Convention on Ground Failures under Seismic Conditions, Prakash and Dakoulas eds., 17-33

Mongondry, P., Nicolai, T. and Tassin, J.F. (2004). Influence of pyrophosphate or polyethylene oxide on the aggregation and gelation of aqueous laponite dispersions. Journal of Colloid and Interface Science 275(1), 191-196. https://doi.org/10.1016/j.jcis.2004.01.037

Mooney, R.W., Keenan, A.G. and Wood, L.A. (1952). Adsorption of water vapor by Montmorillonite. I. Heat of desorption and application of BET theory1. Journal of the American Chemical Society 74(6), 1367-1371. https://doi.org/10.1021/ja01126a001

Ochoa-Cornejo, F.A. (2015). Cyclic behavior of sands with superplastic fines. PhD thesis, Purdue University, West Lafayette, Indiana

Ochoa-Cornejo, F., Bobet, A., Johnston, C.T., Santagata, M. and Sinfield, J.V. (2016). Cyclic behavior and pore pressure generation in sands with laponite, a super-plastic nanoparticle. Soil Dynamics and Earthquake Engineering 88, 265-279. https://doi.org/10.1016/j.soildyn.2016.06.008

Ochoa-Cornejo, F., Bobet, A., Johnston, C., Santagata, M. and Sinfield, J. (2014). Liquefaction 50 years after Anchorage 1964; how nanoparticles could prevent it. Proceedings of the 10 th National Conference in Earthquake Engineering, Earthquake Engineering Research Institute, Anchorage, USA. https://doi.org/10.4231/D3CC0TT8W

Polito, C.P. and Martin, J.R. (2001). Effects of nonplastic fines on the liquefaction resistance of sands. Journal of Geotechnical and Geoenvironmental Engineering 127(5), 408-415. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(408)

Ruzicka, B. and Zaccarelli, E. (2011). A fresh look at the Laponite phase diagram. Soft Matter 7(4), 1268-1286. https://doi.org/10.1039/C0SM00590H

Troncoso, J. and Verdugo, R. (1985). Silt content and dynamic behavior of tailings sands. XI International Conference on Soil Mechanics and Foundation Engineering, San Francisco, 1311-1314.

Willenbacher, N. (1996). Unusual thixotropic properties of aqueous dispersion of Laponite RD. Journal of Colloid and Interface Science 182(2), 501-510. https://doi.org/10.1006/jcis.1996.0494

Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Liam Finn, W.D., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.S.C., Marcuson, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B. and Stokoe, K.H. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering 127(10), 297-313. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(297)

Downloads

Published

2017-06-01

Issue

Section

Articles

How to Cite

Laponite: a nanotechnology that retards liquefaction. (2017). Obras Y Proyectos, 21, 6-12. https://doi.org/10.4067/S0718-28132017000100001