Early age concrete strength measurement: best fit method for the prediction of the minimum vertical concrete elements stripping times
DOI:
https://doi.org/10.4067/S0718-28132017000200006Keywords:
concrete, stripping, maturity, maturity index, early age strength measurementAbstract
This article presents a deep study of different methods for early age concrete strength measurement. The goal is the determination of the measuring instrument/ method that best fit the strength-maturity curves in order to determinate minimum vertical concrete stripping times. Compression tests of cylindrical specimens of normal dimensions of 15 × 30 cm as well as of smaller dimensions of 10 × 20 cm were carried out. In addition, concrete sclerometer tests, low resistance sclerometer and penetrometer test were also studied. Two different concrete dosages were used and the experimental data were checked with more than 500 curves points of the maturity curves. It is concluded that the use of pendular sclerometer is recommended when the user wishes stripping with less than 3 MPa of concrete resistance. If it is desired stripping with resistance above this value, it is recommended the use of cylindrical specimens of normal dimensions.
References
ACI 347 (2004). Guide to formwork for concrete. American Concrete Institute, Farmington Hills, USA
Arni, H.T. (1972). Impact and penetration tests of portland cement concrete. Federal Highway Administration Report No FHWA-RD-73-5.
ASTM C403/C 403M (2008). Standard test method for time of setting of concrete mixtures by penetration resistance. American Society for Testing and Materials. West Conshohocken, USA
ASTM C803/C803M (2003). Standard test method for penetration resistance of hardened concrete. American Society for Testing and Materials. West Conshohocken, USA
ASTM C805/C805M (2013). Standard test method for rebound number of hardened concrete. American Society for Testing and Materials. West Conshohocken, USA
ASTM C900 (2013). Standard test method for pullout strenght of hardened concrete. American Society for Testing and Materials. West Conshohocken, USA
ASTM C1074 (2004). Standard practice for estimating concrete strength by the maturity method. American Society for Testing and Materials. West Conshohocken, USA
Bazant, Z.P. and Planas, J. (1998). Fracture and size effect in concrete and other quasibrittle materiales. CRC press
Brooks, A., Schindler, A. and Barnes, R. (2007). Maturity method evaluated for various cementitious materials. Journal of Materials in Civil Engineering 19, 1017-1025. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:12(1017)
BS 8110 (1985). Structural use of concrete. Part 2: Code of practice for special circumstances. British Standards Institution, Milton Keynes, UK
Carino, N.J., Lew, H.S. and Volz, C.K. (1983). Early age temperature effects on concrete strength prediction by the maturity method. Journal of the American Concrete Institute 80(2), 93-101
Casinello, F. (1974). Construcción: hormigonería. Rueda, Madrid
Di Maio, A., Giaccio, G. and Zerbino, R. (1996). Break-off test for higth-strength concrete. Cement Concrete and Aggregate 18(1), 15-18. https://doi.org/10.1520/CCA10307J
EHE-08 (2008). Instrucción de hormigón estructural. Gobierno de España, Ministerio de Fomento
EN 206-1 (2001). Concrete - Part 1: Specification, performance, production and conformity. Concrete and related products technical committee. European Standard
EN 197-1 (2006). Composition, specifications and conformity criteria for common cements. European Standard
Hanna, A.S. and Senouci, A.B. (1997). Material cost minimization of concrete wall forms. Building and Environment 32(1), 57 – 67. https://doi.org/10.1016/S0360-1323(96)00037-6
Harrison, T. (1977). Tables of minimum striking times for soffit and vertical formwork. CIRIA Report 67
Harmsen, T. (2002). Diseño de estructuras de concreto armado. Fondo Editorial PUC del Perú, tercera edición
Hurd, M.K. (2005). Formwork for concrete. American Concrete Institute, Farmington Hills
IHA 61 (1961). Instrucción H.A. 61. Especial para estructuras de hormigón armado. Normas y manuales del Instituto Eduardo Torroja de la construcción y del cemento, Madrid
Kopczynski, C. (2008). Formwork efficiencies. Concrete International 30(6), 41 – 43
Malhorta, V.M. (1970). Preliminary evaluation of Windsor probe equipment for estimating the compressive strength of concrete. Mines Branch Investigation Report IR 71-1, Department of Energy, Mines and Resources, Ottawa
NTC 673 (2010). Concretos: ensayo de resistencia a la compresión de especímenes cilíndricos de concreto. Norma Técnica Colombiana.
Nurse, R.W. (1949). Stream curing of concrete. Magazine of Concrete Research 1(2), 79-88
Páez, A. (1986). Hormigón Armado. Editorial Reverte
Rudeli, N., Santilli, A. and Arrambide, F. (2015). Striking of vertical concrete elements: An analysis using the maturity method. Engineering Structures 95, 40-48
Rudeli, N. y Santilli, A. (2014). Tiempos de desencofrado de elementos verticales de hormigón armado: Método a través de coeficientes de maduración y encuesta en Uruguay. Memorias de Trabajos de Difusión Científica y Técnica.
Santilli, A., Texeira, S. and Puente, I. (2015). Influence of temperature and concrete reinforcement on vertical formwork design. Construction and Building Materials 88, 188-195. https://doi.org/10.1016/j.conbuildmat.2015.04.017
Saul, A.G. (1951). Principles underlyng the steam curing of concrete at atmospheric pressure. Magazine of Concrete Research 2(6), 127-140. https://doi.org/10.1680/macr.1951.2.6.127
UNE EN 12390 (2003). Ensayos de hormigón endurecido. Parte 3: Determinación de la resistencia a compresión de probetas. AENOR España
UNE 83308 (1986). Ensayos de hormigón: determinación de la velocidad de propagación de los impulsos ultrasónicos. AENOR España

Downloads
Published
Issue
Section
License
Copyright (c) 2017 Universidad Católica de la Santísima Concepción

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.