Effect of non-plastic fines on the undrained response of a tailings sand under high pressures
DOI:
https://doi.org/10.21703/0718-51620202203202Keywords:
Tailings sands, High pressures, Fines contentAbstract
Tailings dams have a critical role in mining operations and nowadays are reaching heights of as much as 250 m in Chile, inducing stresses beyond those seen in standard geotechnical engineering practice. Adding the constant risk of liquefaction in a seismic country, understanding tailings sands behaviour under these conditions is vital for developing improved and safer designs. This work presents the analysis of 56 undrained triaxial tests to address the effect of the fines content and stress level on the monotonic undrained behaviour of a tailings sand. Sand remoulded specimens were prepared with fines contents of 1% and 20% by dry weight of sand, covering the range of fines content allowed by Chilean normative, and initial effective confinement from 0.2 to 5 MPa. The results suggest that the variation in fines content has significant effects on the ultimate undrained shear resistance and the steady-state of the soil, and little effect on the internal friction angle and deformation modulus. On the other hand, large confining stresses decrease the friction angle, suppress the dilatancy, curve the failure envelope, and induce particle abrasion. The results are also compared with those obtained for drained and compression tests on the same tailings sand.
References
ASTM D4254 (2000). Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM International, West Conshohoken PA, USA.
Barrera, S., Valenzuela, L. and Campaña, J. (2011). Sand tailings dams: design, construction and operation. Tailings and Mine Waste Conference, University of British Columbia, Norman B. Keevil Institute of Mining Engineering, Vancouver BC, Canada.
Biscontin, G., Cola, S., Pestana, J.M. and Simonini, P. (2007). Unified compression model for Venice lagoon natural silts. Journal of Geotechnical and Geoenvironmental Engineering 133(8), 932-942.
Bishop, A.W. (1966). The strength of soils as engineering materials. Géotechnique 16(2), 91-130.
Bravo, M. (2018). Efecto del confinamiento y el contenido de finos no plásticos en el comportamiento monótono drenado de arenas de relave. Memoria de título de Ingeniero Civil, Universidad de Chile, Santiago, Chile.
Coop, M.R. and Lee, I.K. (1993). The behaviour of granular soils at elevated stresses. Predictive Soil Mechanics: Proceedings of the Wroth Memorial Symposium, St Catherine’s College, Oxford, G.T. Houlsby and A.N. Schofield (eds.), Thomas Telford Publishing, UK, 186-198.
Córdova, C. (2017). Efecto del contenido de finos no plásticos en la compresibilidad y rotura de partículas de arenas de relave. Memoria de título de Ingeniero Civil, Universidad de Chile, Santiago, Chile.
Córdova, C., Ochoa, F., Verdugo, R., Olguín, R., Bravo, M. y Mercado, V. (2019). Comportamiento isotrópico a altas presiones de arenas de relave con finos no plásticos. Obras y Proyectos 26, 17-26.
Cubrinovski, M. and Ishihara, K. (2002). Maximum and minimum void ratio characteristics of sands. Soils and Foundations 42(6), 65-78.
DS248 (2007). Reglamento para la aprobación de proyectos de diseño, construcción, operación y cierre de los depósitos de relaves. Ministerio de Minería, Santiago, Chile.
JGS (2000). Test methods for minimum and maximum densities of sands. Soil testing standards. Japanese Geotechnical Society JGS, 136-138.
Lade, P.V., Yamamuro, J.A. and Liggio, C.D. (2009). Effects of fines content on void ratio, compressibility and static liquefaction of silty sand. Geomechanichs and Engineering 1(1), 1-15.
Lade, P.V., Liggio, C.D. and Yamamuro, J.A. (1998). Effects of non-plastic fines on maximum and minimum void ratios of sand. Geotechnical Testing Journal 21(4), 336-347.
Lade, P.V., Yamamuro, J.A. and Bopp, P.A. (1996). Significance of particle crushing in granular materials. Journal of Geotechnical Engineering 122(4), 309-316.
Lee, K.L. and Farhoomand, I. (1967). Compressibility and crushing of granular soil in anisotropic triaxial compression. Canadian Geotechnical Journal 4(1), 68-86.
Lo, K.Y. and Roy, M. (1973). Response of particulate materials at high pressures. Soils and Foundations 13(1), 61-76.
Maureira, S. y Verdugo, R. (2014). El fenómeno de rotura de partículas en suelos arenosos. VIII Congreso Chileno de Ingeniería Geotécnica, PUC y SOCHIGE, Santiago, Chile, artículo A24.
Mesri, G. and Vardhanabhuti, B. (2009). Compression of granular materials. Canadian Geotechnical Journal 46(4), 369-392.
Pestana, J.M. and Whittle, A.J. (1995). Compression model for cohesionless soils. Géotechnique 45(4), 611-631.
Polito, C.P. and Martin II, J.R. (2001). Effects of nonplastic fines on the liquefaction resistance of sands. Journal of Geotechnical and Geoenviromental Engineering 127(5), 408-415.
Thevanayagam, S., Ravishankar, K. and Mohan, S. (1997). Effects of fines on monotonic undrained shear strength of sandy soils. Geotechnical Testing Journal 20(4), 394-406.
Verdugo, R. (2009). Seismic performance based-design of large earth and tailings dams. Conference on Performance-Based Design in Earthquake Geotechnical Engineering, Tsukuba, Japan, Kokusho, Tsukamoto and Yoshimine (eds.), Taylor & Francis Group, London, UK, 41-60.
Verdugo, R. and Ishihara, K. (1996). The steady state of sandy soils. Soils and Foundations 36(2), 81-91.
Yamamuro, J.A. and Lade, P.V. (1999). Experiments and modelling of silty sands susceptible to static liquefaction. Mechanics of Cohesive‐Frictional Materials 4(6), 545-564.
Yang, S., Lacasse, S. and Sandven, R. (2006). Determination of the transitional fines content of mixtures of sand and non-plastic fines. Geotechnical Testing Journal 29(2), 102-107.
Yu, F.W. (2017). Particle breakage and the critical state of sands. Géotechnique 67(8), 713-719.
Zlatovic, S. and Ishihara, K. (1995). On the influence of nonplastic fines on residual strength. First International Conference on Earthquake Geotechnical Engineering, Tokyo, Japan, K. Ishihara (ed.), Balkema, the Netherlands, vol. 2, 239-244.
Zoback, M.D. and Byerlee, J. D. (1976). Effect of high-pressure deformation on permeability of Ottawa sand. AAPG Bulletin 60(9), 1531-1542.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Universidad Católica de la Santísima Concepción

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


