Yield displacement of slender cantilever RC walls as a function of the seismic demand features

Authors

DOI:

https://doi.org/10.4067/S0718-28132021000100031

Keywords:

Yield displacement, Reinforced concrete, Cantilever slender walls, Seismic analysis

Abstract

The yield displacement is a relevant parameter to design slender cantilever RC walls under seismic actions. If the wall is expected to undergo inelastic excursions, then the yield displacement is used to estimate ductility demands, which are in turn used to design boundary elements (confinement reinforcing). In the last years, expressions to estimate the yield displacement have been proposed in several studies; many of them resorting to models with concentrated inelasticity. Results obtained with these models could be unrepresentative of the phenomenon studied, due to the assumption that the wall has elastic behaviour and constant stiffness above the critical section; evidence shows that the flexural stiffness of a wall varies during the dynamic response. Independently of the model used, most of the studies consider pushover analysis with different lateral load patterns (e.g. triangular or uniform), assuming the nature of the seismic demand. In this work, a parametric study of the yield displacement for cantilever slender RC walls is presented. The results were obtained from nonlinear response history analyses (NRHA) for a set of cantilever RC walls, representative of real wall buildings. To carry out NRHA, natural and artificial records with different features are used. Additionally, walls with different aspect ratio, height, thickness and longitudinal reinforcement are considered; walls were modelled with unidirectional fibres. The final discussion is focused on the influence of the higher mode effects in the yield displacement and its variability, in order to provide useful and simple design recommendations.

References

Adebar, P., Ibrahim, A. and Bryson, M. (2007). Test of high-rise core wall: effective stiffness for seismic analysis. ACI Structural Journal 104(5), 549-559.

ASCE 7-10 (2010). Minimum design loads for buildings and other structures. American Society of Civil Engineers, Reston, Virginia, USA. https://doi.org/10.1061/9780784412916

Beyer, K., Simonini, S., Constantin, R. and Rutenberg, A. (2014). Seismic shear distribution among interconnected cantilever walls of different lengths. Earthquake Engineering & Structural Dynamics 43(10), 1423-1441. https://doi.org/10.1002/eqe.2403

Bommer, J. and Martínez-Pereira, A. (1999). The effective duration of earthquake strong motion. Journal of Earthquake Engineering 3(2), 127-172. https://doi.org/10.1080/13632469909350343

DS61 (2011). Decreto Supremo N°61. Reglamento que fija el diseño sísmico de edificios y deroga Decreto Nº 117, de 2010. Ministerio de Vivienda y Urbanismo, Diario Oficial de la República de Chile, Nº 40.133, 8-12.

DS60 (2011). Decreto Supremo 60. Reglamento que fija los requisitos de diseño y cálculo para el hormigón armado y deroga Decreto N°118, de 2010. Ministerio de Vivienda y Urbanismo, Diario Oficial de la República de Chile, Nº 40.133, 1-8.

Filippou, F.C., Popov, E.P. and Bertero, V.V. (1983). Effects of bond deterioration on hysteretic behaviour of reinforced concrete joints. Report EERC 83-19, Earthquake Engineering Research Center, University of California, Berkeley, USA.

Fragiadakis, M., Pinho, R. and Antoniou, S. (2008). Modelling inelastic buckling of reinforcing bars under earthquake loading. In Computational Structural Dynamics and Earthquake. Engineering, M. Papadrakakis, D.C. Charmpis, N.D. Lagaros and Y. Tsompanakis (eds.), A.A. Balkema Publishers – Taylor & Francis, The Netherlands, 347-362. https://doi.org/10.1201/9780203881637.ch22

Jiménez, F., Massone, L., Macaya, F. y Bass, E. (2019). Amplificación dinámica del corte en muros de H.A. con estructuración chilena. XII Congreso Chileno de Sismología e Ingeniería Sísmica ACHISINA, Valdivia, Chile, artículo 1539.

Lagos, R., Lafontaine, M., Bonelli, P., Boroschek, R., Guendelman, T., Massone, L., Saragoni, R., Rojas, F. and Yañez, F. (2020). The quest for resilience: The Chilean practice of seismic design for reinforced concrete buildings. Earthquake Spectra 37(1), 26–45. https://doi.org/10.1177/8755293020970978

Lagos, R., Kupfer, M., Lindenberg, J., Bonelli, P., Saragoni, R., Guendelman, T., Massone, L., Boroschek, R. and Yañez, F. (2012). Seismic performance of high-rise concrete buildings in Chile. International Journal of High-Rise Buildings 1(3), 181–194. https://doi.org/10.21022/IJHRB.2012.1.3.181

Massone, L.M., Bonelli, P., Lagos, R., Lüders, C., Moehle, J. and Wallace, J.W. (2012). Seismic design and construction practices for RC structural wall buildings. Earthquake Spectra 28(1), 245–256. https://doi.org/10.1193/1.4000046

Menegotto, M. and Pinto, P.E. (1973). Method of analysis for cyclically loaded reinforced concrete plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well– Defined Repeated Loads, International Association for Bridge and Structural Engineering IABSE, Lisbon, Portugal, 15-20.

Moehle, J. (2015). Seismic design of reinforced concrete buildings. McGraw-Hill Education, New York, USA.

Morales, A. (2017). Seismic shear and moment demands in RC wall buildings. PhD thesis, Istituto Universitario di Superiori di Pavia (IUSS), Italy.

Morales, A., Ceresa, P. and Hube, M. (2019). Seismic shear and moment demands in reinforced concrete wall buildings. 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, COMPDYN 2019, M. Papadrakakis and M. Fragiadakis (eds.), Crete, Greece. ECCOMAS Proceedia, 4115-4127. https://doi.org/10.7712/120119.7211.20160

NCh433 (2009). Diseño sísmico de edificios. Norma Chilena Oficial NCh433 Of.96 modificada 2009. Instituto Nacional de Normalización, Santiago, Chile.

Paulay, T. and Priestley, M.J. N. (1992). Seismic design of reinforced concrete and masonry structures. John Wiley & Sons, New York, USA. https://doi.org/10.1002/9780470172841

Pennucci, D., Sullivan, T.J. and Calvi, G.M. (2015). Inelastic higher-mode response in reinforced concrete wall structures. Earthquake Spectra 31(3), 1493–1514. https://doi.org/10.1193/051213EQS123M

Priestley, M.J.N. (2003). Myths and fallacies in earthquake engineering revisited. ROSE School report, Pavia, Italy.

Priestley, M.J.N. (1998). Brief comments on elastic flexibility of reinforced concrete frames and significance to seismic design. Bulletin of the New Zealand Society for Earthquake Engineering 31(4), 246-259. https://doi.org/10.5459/bnzsee.31.4.246-259

Priestley, M.J.N. and Amaris, A. (2002). Dynamic amplification of seismic moments and shear forces in cantilever walls. Research report ROSE – 2002/01, IUSS press, Pavia, Italy.

Priestley, M.J.N., Calvi G.M. and Kowalsky, M.J. (2007). Displacement-based seismic design of structures. IUSS PRESS, Pavia, Italy. https://doi.org/10.1193/1.2932170

Quintana Gallo, P. (2018). Simple estimation of the maximum elastic roof displacement of a slender cantilever RC wall accounting for dynamic effects. Obras y Proyectos 23, 55-62. http://dx.doi.org/10.4067/s0718-28132018000100055

Rubina, V. (2020). Desplazamiento de fluencia de muros de hormigón armado y su relación con el tipo de demanda. Trabajo de título, Universidad de Valparaíso, Chile.

Sedgh, R.E., Dhakal, R.P. and Carr, A.J. (2015). State of the art: Challenges in analytical modelling of multi-storey shear wall buildings. New Zealand Society for Earthquake Engineering Annual Conference NZSEE, Rotorua, New Zealand, paper O-15, 139-150.

Seismosoft (2016). SeismoArtif v2016. Available from http://www.seismosoft.com

Seismosoft (2018). SeismoStruct v2018 – A computer program for static and dynamic nonlinear analysis of framed structures. Available from http://www.seismosoft.com

Thomsen, J.H. and Wallace, J.W. (1995). Displacement-based design of RC structural walls: Experimental studies of walls with rectangular and T-shaped cross sections. Report No.CU/CEE95/96, Department of Civil and Environmental Engineering, Clarkson University, USA.

Thomsen, J.H. and Wallace, J.W. (2004). Displacementbased design of slender reinforced concrete structural walls – Experimental verification. Journal of Structural Engineering 130(4), 618-630. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(618)

Wood, S.L., Wight, J.K. and Moehle, J.P. (1987). The 1985 Chile earthquake, observations on earthquake resistant construction in Viña del Mar. Civil Engineering Studies. Structural Research Series No. 532, University of Illinois, Urbana, USA.

Downloads

Published

2021-06-30

Issue

Section

Articles

How to Cite

Yield displacement of slender cantilever RC walls as a function of the seismic demand features. (2021). Obras Y Proyectos, 29, 31-41. https://doi.org/10.4067/S0718-28132021000100031