Expansive clays from Northern Venezuela: Characterization using Atterberg limits, consistency indices and expansion tests

Authors

  • Carlos López-Niño Universidad Central de Venezuela, Facultad de Ingeniería, Escuela de Geología, Minas y Geofísica
  • Elio Guevara Universidad Central de Venezuela, Facultad de Ingeniería, Escuela de Geología, Minas y Geofísica
  • Víctor León Universidad Central de Venezuela, Facultad de Ingeniería, Escuela de Geología, Minas y Geofísica
  • Danilo López-Hernández Universidad Central de Venezuela, Facultad de Ciencias, Instituto de Zoología y Ecología Tropical

DOI:

https://doi.org/10.21703/0718-2813.2023.34.2451

Keywords:

liquid limit, plasticity index, swelling, expansive clay

Abstract

The northern coastal strip of Venezuela with a semiarid climate presents conditions for the development of
extensive areas with the presence of expansive clays, and, this is the main pathology of its communication routes due to deformation in the surrounding civil works. This contribution characterizes the presence of expansive clays in northern Venezuela in 81 samples distributed in several states of the country. The study included the determination of geomechanical properties through field work and laboratory tests by Atterberg limits, consistency indices and expansion tests as well as the relationship between the indexes and information from edometer tests. The soil grain size is mainly fine (silts and clays), in the Anzoátegui state the average content of fine grains is 86%, while in Falcón and Miranda they are a little lower, 82% and 67%, respectively. In general, the plasticity index (PI) of these expansive clays is high,
with an overall average of 23, although the region of Falcón state presented a moderate average (18). The
correlations between the expansion pressure and the PI showed a high correlation. These results corroborate that the criterion used to evaluate the Expansion Potential of a clay soil based on the PI proposed by Chen (1988), is a fairly adequate criterion to be used in the study and identification of the expansive behavior of these types of soils.

References

ASTM D6913 (2017). Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. West Conshohocken PA, USA

ASTM D2216 (2019). Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass. West Conshohocken PA, USA

ASTM D4318 (2017). Standard test methods for liquid limit, plastic limit, and plasticity index of soils. West Conshohocken PA, USA

ASTM D427 (2004). Test method for shrinkage factors of soils by the mercury method. West Conshohocken PA, USA

ASTM D4546 (2021). Standard test methods for one-dimensional swell or collapse of cohesive soils. West Conshohocken PA, USA

Chen, F. (1988). Foundations on expansive soils. Elsevier Scientific Publishing Company, USA

Codevilla, M. (2008). Arcillas expansivas del Gran Buenos Aires. XIX Congreso Argentino de Mecánica de Suelos e Ingeniería Geotécnica, La Plata, Provincia de Buenos Aires, Argentina

Das, B. (2012). Fundamentos de ingeniería de cimentaciones. Editorial Cengage Learning, 7ma edición, México

Deng, Y., Cai, C., Xia, D., Ding, S., Chen, J. and Wang, T. (2017). Soil Atterberg limits of different weathering profiles of the collapsing gullies in the hilly granitic region of southern China. Solid Earth 8(2), 499–513

Kalantari, B. (2012). Foundations on expansive soils: a review. Research Journal of Applied Sciences, Engineering and Technology 4(18), 3231-3237

Keller, T., and Dexter, A.R. (2012). Plastic limits of agricultural soils as functions of soil texture and organic matter content. Soil Research 50(1), 7–17

López, C.I. y Guevara, E.J. (2012). Determination and evaluation of expansive and dispersive clays in three locations in northern Venezuela, Anzoátegui, Falcón and Miranda states. Proyecto de título de Ingeniero Geólogo, Universidad Central de Venezuela

López-Hernández, D. (2019). Sabanas del Orinoco: Producción primaria y biogeoquímica de los elementos. Colección de Estudios Academia de Ciencias Físicas, Matemáticas y Naturales. Caracas, Venezuela

López-Hernández, D., Mahia-Masip, M.A., Meléndez, W. and López-Contreras, A. (2022). NH4+ fixation and ionic competition with K+ in a clayey soil from Ocumare Del Tuy, Venezuela. Canadian Journal of Agriculture and Crops 7(2), 38-45

Ng, C.W.W. and Menzies, B. (2007). Advanced unsaturated soil mechanics and engineering. Taylor & Francis Group, Abingdon, UK

Patel, A. (2019). Geotechnical investigations and improvement of ground conditions. Woodhead Publishing Series in Civil and Structural Engineering, UK, 167-191

Prieto, N. y López-Hernández, D. (1984). Estudios físicos y químicos de suelos en la región del Estero de Camaguán (Edo. Guárico). Boletín de la Sociedad Venezolana de Ciencias Naturales 39, 215-226

Rao, A.S., Phanikumar, B.R. and Sharma, R.S. (2004). Prediction of swelling characteristics of remoulded and compacted expansive soils using free swell index. Quarterly Journal of Engineering Geology and Hydrogeology 37(3), 217–226

Rodríguez, P.C.A. (2020). Un método simplificado de predicción de hinchamiento de arcillas expansivas debido a cambios de humedad. Obras y Proyectos 28, 35-44

Rodríguez Castiblanco, E.A. (2014). Evaluación del comportamiento geomecánico de arcillas en el sector de Campoalegre-Ciudad de Barranquilla. Tesis de Magister en Ingeniería-Geotecnia, Universidad Nacional de Colombia,

Bogotá, Colombia

Sabtan, A.A. (2005). Geotechnical properties of expansive clay shale in Tabuk, Saudi Arabia. Journal of Asian Earth Sciences 25(5), 747–757

Seed, H.B., Woodward, R.J. and Lundgren, R. (1962). Prediction of swelling potential for compacted clays. Journal of the Soil Mechanics and Foundations Division 88(3), 53-87

Shi, B., Jiang, H., Liu, Z. and Fang, H.Y. (2002). Engineering geological characteristics of expansive soils in China. Engineering Geology 67, 63-71

Vorwerk, S., Cameron, D. and Keppel, G. (2015). Clay soil in suburban environments: Movement and stabilization through vegetation. Part 3, chapter 22 in Ground Improvement Case Histories, B. Indraratna, J. Chu, and C. Rujikiatkamjorn (eds.), Butterworth-Heinemann, 655–682

Zolfaghari, Z., Mosaddeghi, M.R., Ayoubi, S. and Kelishadi, H. (2015). Soil Atterberg limits and consistency indices as influenced by land use and slope position in Western Iran. Journal of Mountain Science 12(6), 1471-1483

Zumraw, M. (2013). Swelling potential of compacted expansive soils. International Journal of Engineering Research & Technology 2(3), 1-6

Published

2023-12-13

How to Cite

López-Niño, C., Guevara, E., León, V., & López-Hernández, D. (2023). Expansive clays from Northern Venezuela: Characterization using Atterberg limits, consistency indices and expansion tests. Obras Y Proyectos, (34), 111–122. https://doi.org/10.21703/0718-2813.2023.34.2451

Issue

Section

Articles