Modelo de decisión multicriterio difuso para la selección de contratistas en proyectos de infraestructura: caso Colombia
DOI:
https://doi.org/10.4067/S0718-28132016000200005Palabras clave:
método TOPSIS, lógica difusa, proyectos de infraestructura, selección de contratistasResumen
Los métodos de decisión multicriterio son cada vez más útiles para solucionar problemas de selección de contratistas de construcción e infraestructura debido al aumento de la comprensión de su utilidad. La investigación propone un modelo multicriterio de selección de contratistas para proyectos de infraestructura de iniciativa pública en Colombia. Para ello se revisó los métodos correspondientes en las diferentes etapas; es decir, la selección de criterios, la ponderación de criterios, la precalificación y selección final. El modelo combina la precalificación con la selección, integración que es más eficaz en la búsqueda del contratista más competente. Los criterios de precalificación se clasifican en 4 categorías: atributos de experiencia, técnicos, organizacionales y financieros y/o económicos, incorporando subcriterios de dimensión cualitativa y cuantitativa. Los criterios de selección son 4: precalificación, oferta técnica, oferta de calidad y oferta económica. Para determinar los criterios y sus respectivos pesos se entrevistaron expertos en proyectos de infraestructura, quienes observan el proceso desde diferentes puntos de vista: de la Agencia Nacional de Infraestructura, de una banca de inversión, un académico y de una constructora que desarrolla proyectos de infraestructura.
Referencias
Alhumaidi, H. (2015). Construction contractors ranking method using multiple decision-makers and multiattribute fuzzy weighted average. Journal of Construction Engineering and Management 141(4), 1-13. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000949
Anagnostopoulos, K.P. and Vavatsikos, A.P. (2006). An AHP model for construction contractor prequalification. Operational Research 6(3), 333-346. https://doi.org/10.1007/BF02941261
ANI (2013). Pliego de condiciones VJ-VE-IP-008-2013. Agencia Nacional de Infraestructura de Colombia
Arslan, G., Kivrak, S., Birgonul, M. T and Dikmen, I. (2008). Improving sub-contractor selection process in construction projects: web-based sub-contractor evaluation system (WEBSES). Automation in Construction 17(4), 480-488. https://doi.org/10.1016/j.autcon.2007.08.004
Awad, A. and Fayek, A.R. (2012). A decision support system for contractor prequalification for surety bonding. Automation in Construction 21, 89-98. https://doi.org/10.1016/j.autcon.2011.05.017
Ballesteros-Perez, P., Carmen Gonzalez-Cruz, M. and Canavate-Grimal, A. (2013). On competitive bidding: Scoring and position probability graphs. International Journal of Project Management 31(3), 434-448. https://doi.org/10.1016/j.ijproman.2012.09.012
Bastias, A. y Molenaar, K.R. (2010). Modelo de aprendizaje para la selección de un proyecto diseño-construcción (llave en mano) en el sector público. Revista Ingeniería de Construcción 25(1), 5-20. https://doi.org/10.4067/S0718-50732010000100001
Bendana, R., del Cano, A. and de la Cruz, M.P (2008). Contractor selection: fuzzy-control approach. Canadian Journal of Civil Engineering 35(5), 473-486. https://doi.org/10.1139/L07-127
Bergman, M.A. and Lundberg, S. (2013). Tender evaluation and supplier selection methods in public procurement. Journal of Purchasing and Supply Management 19(2), 73-83. https://doi.org/10.1016/j.pursup.2013.02.003
Bolton, P (2009). The committee system for competitive BIDS in local government. PER: Potchefstroomse Elektroniese Regsblad 12(2), 57-96. https://doi.org/10.17159/1727-3781/2009/v12i2a2727
Chou, J.S., Pham, A.D. and Wang, H. (2013). Bidding strategy to support decision-making by integrating fuzzy AHP and regression-based simulation. Automation in Construction 35, 517-527. https://doi.org/10.1016/j.autcon.2013.06.007
Darvish, M., Yasaei, M. and Saeedi, A. (2009). Application of the graph theory and matrix methods to contractor ranking. International Journal of Project Management 27(6), 610-619. https://doi.org/10.1016/j.ijproman.2008.10.004
DPN (2013). Decreto 1510 de 2013. Por la cual se reglamenta la contratación pública. Dirección de Planeación Nacional de Colombia. Diario oficial.
El-Abbasy, M.S., Zayed, T., Ahmed, M., Alzraiee, H. and Abouhamad, M. (2013). Contractor selection model for highway projects using integrated simulation and analytic network process. Journal of Construction Engineering and Management 139(7), 755-767. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000647
Estache, A. and Iimi, A. (2011). Bidders’ entry and auctioneer’s rejection: applying a double selection model to road procurement auctions. Journal of Applied Economics 14(2), 199-223. https://doi.org/10.1016/S1514-0326(11)60012-3
Hatush, Z. and Skitmore, M. (1998). Contractor selection using multicriteria utility theory: an additive model. Building and Environment 33(2), 105-115. https://doi.org/10.1016/S0360-1323(97)00016-4
Horta, I.M., Camanho, A.S. and Lima, A.F. (2013). Design of performance assessment system for selection of contractors in construction industry e-marketplaces. Journal of Construction Engineering and Management 139(8), 910-917. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000691
Hwang, C.L. and Yoon, K. (1981). Multiple attribute decision making. Springer Verlag, Berlin
Jaskowski, P., Biruk, S. and Bucon, R. (2010). Assessing contractor selection criteria weights with fuzzy AHP method application in group decision environment. Automation in Construction 19(2), 120-126. https://doi.org/10.1016/j.autcon.2009.12.014
Jato-Espino, D., Castillo-Lopez, E., Rodriguez-Hernandez, J. and Canteras-Jordana, J. C. (2014). A review of application of multi-criteria decision making methods in construction. Automation in Construction 45, 151-162. https://doi.org/10.1016/j.autcon.2014.05.013
Krohling, R.A. and Campanharo, V.C. (2011). Fuzzy TOPSIS for group decision making: a case study for accidents with oil spill in the sea. Expert Systems with Applications 38, 4190-4197. https://doi.org/10.1016/j.eswa.2010.09.081
Lambropoulos, S. (2007). The use of time and cost utility for construction contract award under European Union Legislation. Building and Environment 42(1), 452-463. https://doi.org/10.1016/j.buildenv.2005.08.002
Li, Y., Nie, X. and Chen, S. (2007). Fuzzy approach to prequalifying construction contractors. Journal of Construction Engineering and Management 133(1), 40-49. https://doi.org/10.1061/(ASCE)0733-9364(2007)133:1(40)
Liu, H. and Yan, T. (2007). Bidding-evaluation of construction projects based on VIKOR method. IEEE International Conference on Automation and Logistics, Jinan, China, 1778-1782. https://doi.org/10.1109/ICAL.2007.4338862
MOP (2009). Decreto Supremo MOP N°75 2009. Por la cual se establece el reglamento de contratos de obras públicas. Ministerio de Obras Públicas de Chile. Diario oficial.
Nassar, K. and Hosny, O. (2013). Fuzzy clustering validity for contractor performance evaluation: Application to UAE contractors. Automation in Construction 31, 158-168. https://doi.org/10.1016/j.autcon.2012.11.013
Nieto-Morote, A. and Ruz-Vila, F. (2012). A fuzzy multicriteria decision-making model for construction contractor prequalification. Automation in Construction 25, 8-19. https://doi.org/10.1016/j.autcon.2012.04.004
Padhi, S.S. and Mohapatra, P.K.J. (2010). Centralized bid evaluation for awarding of construction projects - A case of India government. International Journal of Project Management 28(3), 275-284. https://doi.org/10.1016/j.ijproman.2009.06.001
Palaneeswaran, E. and Kumaraswamy, M. (2001). Recent advances and proposed improvements in contractor prequalification methodologies. Building and Environment 36(1), 73-87. https://doi.org/10.1016/S0360-1323(99)00069-4
Park, K. and Chul, L. (2012). Whole life performance bid evaluation in the Korean public sector. Journal of the Korea Institute of Building Construction 12(6), 682-700. https://doi.org/10.5345/JKIBC.2012.12.6.682
Plebankiewicz, E. (2014). Modelling decision-making processes in bidding procedures with the use of the fuzzy sets theory. International Journal of Strategic Property Management 18(3), 307-316. https://doi.org/10.3846/1648715X.2014.943332
Plebankiewicz, E. (2012). A fuzzy sets based contractor prequalification procedure. Automation in Construction 22, 433-443. http://dx.doi.org/10.1016/j.autcon.2011.11.003
Plebankiewicz, E. (2009). Contractor prequalification model using fuzzy sets. Journal of Civil Engineering and Management 15(4), 377-385. https://doi.org/10.3846/1392-3730.2009.15.377-385
Roy, B. and Sfowiński, R. (2013). Questions guiding the choice of a multicriteria decision aiding method. EURO Journal on Decision Processes 1(1), 69-97. https://doi.org/10.1007/s40070-013-0004-7
Saaty, T.L. (1995). Transport planning with multiple criteria: the analytic hierarchy process applications and progress review. Journal of Advanced Transportation 29(1), 81-126. https://doi.org/10.1002/atr.5670290109
San Cristóbal, J.R. (2012). Contractor selection using multicriteria decision-making methods. Journal of Construction Engineering and Management 138(6), 751-758. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000488
Singh, D. and Tiong, R.L.K. (2005). A fuzzy decision framework for contractor selection. Journal of Construction Engineering and Management 131(1), 62-70. https://doi.org/10.1061/(ASCE)0733-9364(2005)131:1(62)
Topcu, Y.K. (2004). A decision model proposal for construction contractor selection in Turkey. Building and Environment 39(4), 469-481. https://doi.org/10.1016/j.buildenv.2003.09.009
Trivedi, M.K., Pandey, M.K. and Bhadoria, S.S. (2011). Prequalification of construction contractor using a FAHP. International Journal of Computer Applications 28(10), 39-45. https://doi.org/10.5120/3424-4773
Turskis, Z. (2008). Multi-attribute contractors ranking method by applying ordering of feasible alternatives of solutions in terms of preferability technique. Technological and Economic Development of Economy 14(2), 224-239. https://doi.org/10.3846/1392-8619.2008.14.224-239
Vahdani, B., Mousavi, S.M., Hashemi, H., Mousakhani, M. and Tavakkoli-Moghaddam, R. (2013). A new compromise solution method for fuzzy group decision-making problems with an application to the contractor selection. Engineering Applications of Artificial Intelligence 26(2), 779-788. https://doi.org/10.1016/j.engappai.2012.11.005
Wang, D., Liu, X., and Liu, L. (2013). Bid evaluation behavior in online procurement auctions involving technical and business experts. Electronic Commerce Research and Applications 12(5), 328-336. https://doi.org/10.1016/j.elerap.2012.10.001
Wang, W.C., Yu, W.D., Yang, I.T., Lin, C.C., Lee, M.T. and Cheng, Y.Y. (2013b). Applying the AHP to support the best-value contractor selection-lessons learned from two case studies in Taiwan. Journal of Civil Engineering and Management 19(1), 24-36. https://doi.org/10.3846/13923730.2012.734851
Wang, J., Xu, Y. and Li, Z. (2009). Research on project selection system of pre-evaluation of engineering design project bidding. International Journal of Project Management 27(6), 584-599. https://doi.org/10.1016/j.ijproman.2008.10.003
Wang, J.J., Jing, Y.Y., Zhang, C.F. and Zhao, J.H. (2009b). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews 13(9), 2263-2278. https://doi.org/10.1016/j.rser.2009.06.021
Watt, D., Kayis, B. and Willey, K. (2009). Identifying key factors in the evaluation of tenders for projects and services. International Journal of Project Management 27(3), 250-260. https://doi.org/10.1016/j.ijproman.2008.03.002
Wei, Z., Wang, X. and Guo, Q. (2011). A contractor prequalification model based on triangular fuzzy number and TOPSIS. 18th International Conference IEEE of Industrial Engineering and Engineering Management (IE&EM), Changchun, 1-4. https://doi.org/10.1109/ICIEEM.2011.6035091
Yalcin, N., Bayrakdaroglu, A. and Kahraman, C. (2012). Application of fuzzy multi-criteria decision making methods for financial performance evaluation of Turkish manufacturing industries. Expert Systems with Applications 39, 350-364. https://doi.org/10.1016/j.eswa.2011.07.024
Ye, K., Li, B. and Shen, L. (2013). Key factors considered in compiling tender prices for China’s public works projects. Journal of Management in Engineering 29(3), 206-215. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000153

Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2016 Universidad Católica de la Santísima Concepción

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.