Presas de relaves de arena de gran altura: desafíos principales

Autores/as

  • Luis Valenzuela Geotechnical consultant, Montecassino 929, Las Condes, Santiago, Chile (formerly Arcadis Chile)
  • Jose Campaña Arcadis Chile, Antonio Varas 621, Providencia, Chile
  • Edgar Bard Arcadis Chile, Antonio Varas 621, Providencia, Chile
  • Abraham Figueroa Arcadis Chile, Antonio Varas 621, Providencia, Chile

DOI:

https://doi.org/10.4067/S0718-28132016000200002

Palabras clave:

presas de relave de arena, presiones de confinamiento elevado, resistencia cíclica, método observacional, depósito de residuo minero

Resumen

El diseño y construcción de presas de relaves más altas resulta en presiones de confinamiento mucho mayores, lo cual afecta el comportamiento geotécnico de presas de relave de arena. Esto llega a ser aún más relevante en regiones con una actividad sísmica constante. Este artículo presenta resultados y análisis de ensayos de compresibilidad edométricos así como de resistencia cíclica de relaves a altas presiones de confinamiento. Además, se estudian resultados de rotura y compresibilidad de gravas y enrocados a altas presiones de confinamiento, ya que ellos forman parte del sistema de drenaje de las presas de relaves. Se discute la estabilidad sísmica y deformación de presas de relaves desde el punto de vista de análisis numérico. Se muestra la importancia del valor de PGA seleccionado y como ha variado en el tiempo en la ingeniería chilena. Finalmente, se describen aspectos relacionados con el método observacional a ser aplicado durante la construcción y operación de presas de relave. Se incluyen tendencias futuras sobre disposición de residuos mineros tales como relaves espesados, pastas de relaves y relaves filtrados.

Referencias

Ambraseys, N.N. (1960). The seismic stability of earth dams, Proceedings of the 2nd World Conference on Earthquake Engineering, Tokyo, Japan, Vol. 2, 1345-1363

Ávila, J. (2011). The drained stacking of granular tailings: a disposal method for a low degree of saturation of the tailings mass. Proceedings of Tailings and Mine Waste, Vancouver

Bard, E., Campaña, J., Valenzuela, L., Figueroa, A. and Marilao, P. (2015). Mine waste rock and riverbed materials at high pressures; applications for high waste rock dumps and high tailings dams design. XV Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Buenos Aires

Bard, E., Campaña, J., Torres, P., Valenzuela, L. y Cifuentes, L. (2014). Comportamiento de arenas a altas presiones de confinamiento: comparación entre arenas de relaves y naturales. VIII Congreso Chileno de Geotecnia, Santiago

Bard, E., Anabalón, M. and Campaña, J. (2012). Waste rock behavior at high pressures: dimensioning high waste rock dumps. In Multiscale Geomechanics, ed. by P.-Y. Hicher, ISTE/Wiley, 86-112. http://dx.doi.org/10.1002/9781118601433.ch4

Bard, E., Campaña, J., Anabalón, M. and Apablaza, R. (2007). Waste rock behavior under high pressures. XIII Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Venezuela

Bray, J.D. and Travasarou, T. (2011). Pseudostatic slope stability procedure. 5th International Conference on Earthquake Geotechnical Engineering, Santiago

Bray, J.D. and Travasarou, T. (2009). Pseudostatic coefficient for use in simplified seismic slope stability evaluation. Journal of Geotechnical and Geoenvironmental Engineering 135(9), 1336-1340. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000012

Bray, J.D. and Travasarou, T. (2007). Simplified procedure for estimating earthquake-induced deviatoric slope displacements. Journal of Geotechnical and Geoenvironmental Engineering 133(4), 381-392. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(381)

Bureau, G., Volpe, R.L. Roth, W.H. and Udaka, T. (1985). Seismic analysis of concrete face rockfill dams. Proceedings of the Symposium on Concrete Face Rockfill Dams -Design, Construction and Performance, ASCE, 479-508

Byrne, P.M. (1991). A cyclic shear-volume coupling and pore pressure model for sand. Proceedings of the 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 47-55

Colliat-D’Angus, J.L. (1986). Comportement des matériaux granulaires sous fortes contraintes. Influence de la nature minéralogique du matériau étudié. Doctorate thesis Université Scientifique et Médicale de Grenoble

Duncan, J., Wright, S.G. and Brandon, T.L. (2014). Soil strength and slope stability. John Wiley & Sons, 2nd edition

Duncan, J.M. and Chang, C.M. (1970). Nonlinear analysis of stress and strain in soils, Journal of Soil Mechanics and Foundations Division 96-SM5, 1629-1653. https://doi.org/10.1061/JSFEAQ.0001458

Finn W.D.L. (2000). State of art of geotechnical earthquake engineering practice. Soil Dynamics and Earthquake Engineering 20(1), 1-15. https://doi.org/10.1016/S0267-7261(00)00033-6

Finn, W.D.L. (1996). Seismic design and evaluation of tailings dams: state of the art. Proceedings International Symposium on Seismic and Environmental Aspects of Dams Design: Earth, Concrete and Tailings Dams, ICOLD - ISSMFE, Chilean Geotechnical Society, 7-34

Hynes-Griffin, M.E. and Franklin, A.G. (1984). Rationalizing the seismic coefficient method. U.S. Army Corps of Engineers, Waterways Experiment Station, Miscellaneous Paper GL-84-13

ICOLD (1986). Earthquake analysis procedures for dams - state of art. Bulletin 52

Illanes, J., Urquidi, J., Figueroa, A., Campaña, J. and Morales, F. (2015). Geotechnical instrumentation in tailings sand dams. XV Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Buenos Aires

Makdisi, F.I. and Seed, H.B. (1978). Simplified procedure for estimating dam and embankment earthquake-induced deformations. Journal of the Geotechnical Engineering Division 104(7), 849-867. https://doi.org/10.1061/AJGEB6.0000668

Marcuson, W.F., Hynes, M.E. and Franklin, A.G. (2007). Seismic design and analysis of embankment dams: the state of practice. Proceedings of the 4th Civil Engineering Conference in the Asian Region, Taipei

Marsal , R. y Resendiz, D. (1975). Presas de tierra y enrocamiento. Editorial Limusa, 221-267

Marsal, R. (1977). Research on granular materials (rockfill and soil-gravel mixtures). Universidad Nacional Autónoma de México

Martin, T.E, Davies, M.P., Rice, S., Higgs, T. and Lighthall, P.C. (2002). Stewardship of tailings facilities. Mining, Minerals and Sustainable Development No. 20. International Institute for Environment and Development

Martin, G.R. (1975). Fundamentals of liquefaction under cyclic loading. Journal of the Geotechnical Engineering Division 101(5), 423-438. https://doi.org/10.1061/AJGEB6.0000164

MM (2007). Decreto Supremo N° 248. Reglamento para la aprobación de proyectos de diseño, construcción, operación y cierre de los depósitos de relaves. Ministerio de Minería de Chile

Morgenstern, N., Van Zyl, D. and Vick, S.G. (2015). Independent expert engineering investigation and review panel. Report on Mount Polley Tailings Storage Facility Breach

Morgenstern, N.R. (1996). Geotechnics and mine waste management. Keynote Lecture, In International Symposium on Seismic and Environmental Aspects of Dams Design: Earth, Concrete and Tailings

Murthy, T. Loukidis, D. Carrasco, J. Prezzi, M. and Salgado, R. (2007). Undrained monotic response of clean and silty sands. Géotechnique 57(3), 273-288. https://doi.org/10.1680/geot.2007.57.3.273

Newman, L. Arnold, K. and Wittwer, D. (2010). Dry stack tailings design for the Rosemont Copper project. International Conference on Tailings and Mine Waste, Vol. 10, 315-326

Newmark, N. (1965). Effects of earthquake on dams and embankments. Géotechnique 15(2), 139-160

Ozkan, Y. (1998). A review of considerations on seismic safety of embankment and earth and rock-fill dams. Soil Dynamics and Earthquake Engineering 17(7), 439-458. https://doi.org/10.1016/S0267-7261(98)00035-9

Peck, R.B. (1980). Where has all the judgement gone?. The 5th Laurits Bjerrum Memorial Lecture. Canadian Geotechnical Journal 17(4), 584-590. https://doi.org/10.1139/t80-065

Priscu, C. (2014). Conceptos de seguridad de los depósitos de relaves y posición de Anglo American al respecto. Presentación interna ARCADIS Chile

Sarma, S.K. (1975). Seismic stability of earth dams and embankments. Géotechnique 25(4), 743-761. https://doi.org/10.1680/geot.1975.25.4.743

Seed, H.B. (1979). Considerations in the earthquake-resistant design of earth and rockfill dams. Géotechnique 29(3), 215-263. https://doi.org/10.1680/geot.1979.29.3.215

Swaisgood, J.R. (2003). Embankment dam deformations caused by earthquakes. Proceedings of the Pacific Conference on Earthquake Engineering, Christchurch, New Zealand

Valenzuela, L. (2016). Design, construction, operation and the effect of fines content and permeability on the seismic performance of tailings sand dams in Chile. Obras y Proyectos 19, 6-22. https://doi.org/10.4067/S0718-28132016000100001

Valenzuela, L. (2015). Tailings dams and hydraulic fills. Casagrande Lecture, XV Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Buenos Aires, Argentina

Valenzuela, L. (2004). Stability issues in natural and man-made slopes in mining. Landslides: Evaluation and Stabilization, Brazil, 467-473

Valenzuela, L., Bard, E., Campaña, J. and Anabalón, M. (2008). High waste rock dumps - challenges and developments. First International Seminar on the Management of Rock Dumps, Stockpiles and Heap Leach Pads, Australia, 65-78

Verdugo, R. (1983). Influencia del porcentaje de finos en la resistencia cíclica de arenas de relaves. Engineering degree thesis, P. Universidad Católica de Chile

Descargas

Publicado

2016-12-01

Número

Sección

Artículos

Cómo citar

Presas de relaves de arena de gran altura: desafíos principales. (2016). Obras Y Proyectos, 20, 17-29. https://doi.org/10.4067/S0718-28132016000200002