Incertidumbres en la estimación del periodo fundamental de terrenos inclinados
DOI:
https://doi.org/10.4067/S0718-28132017000100005Palabras clave:
periodo característico, terrenos inclinados, respuesta sísmica, método de relación espectralResumen
El periodo característico de un terreno T0, es un parámetro ampliamente usado para definir el periodo de vibración en el cual una mayor amplificación sísmica puede ser esperada. Para terrenos inclinados, contrario a lo presentado en terrenos planos o de baja pendiente, la respuesta sísmica requiere de a lo menos un análisis bidimensional para determinar T0. Si bien los antecedentes sobre comportamiento sísmico de terrenos inclinados representan una sólida base que permiten identificar algunas de las variables que condicionan la respuesta del suelo, actualmente no hay un criterio unificado respecto a la evaluación analítica o experimental del periodo característico de un terreno inclinado. En el presente estudio se realizó, usando el método de elementos finitos, un análisis paramétrico 2D de la respuesta sísmica de terrenos con inclinación superior a 15°, con el fin de identificar su periodo característico en campo libre. Asimismo, se realizaron mediciones usando la técnica de la relación espectral H/V, HVSR, en un terreno con ángulo de inclinación superior a 15°, cuyos resultados en términos del periodo fueron contrastados con la respuesta registrada en el análisis paramétrico realizado. A partir de los resultados obtenidos se observó que un punto localizado sobre un terreno inclinado puede registrar dos zonas de amplificación, cuyos máximos tienen asociado, independiente del ángulo de inclinación, igual periodo en cualquier punto a lo largo de la pendiente del terreno.
Referencias
AFPS (1995). Guidelines for seismic microzonation studies. AFPS/DRM, French Association for Earthquake Engineering
Ashford, S.A. and Sitar, N. (1997). Analysis of topographic amplification of inclined shear waves in a steep coastal bluff. Bulletin of the Seismological Society of America 87(3), 692-700. https://doi.org/10.1785/BSSA0870030692
Ashford, S.A., Sitar, N., Lysmer, J. and Deng, N. (1997). Topographic effects on the seismic response of steep slopes. Bulletin of the Seismological Society of America 87(3), 701-709. https://doi.org/10.1785/BSSA0870030701
Assimaki, D. and Jeong, S. (2013). Ground-motion observations at hotel Montana during the M 7.0 2010 Haiti earthquake: Topography or soil amplification?. Bulletin of the Seismological Society of America 103(5), 2577-2590. https://doi.org/10.1785/0120120242
Assimaki, D., Kausel, E. and Gazetas, G. (2005). Soil-dependent topographic effects: a case study from the 1999 Athens earthquake. Earthquake Spectra 21(4): 929-966. https://doi.org/10.1193/1.2068135
Bard, P.Y. (1998). Microtremor measurements: a tool for site effect estimation? Second International Symposium on the Effects of Surface Geology on Seismic Motion, Yokohama, Japon, Vol. 3, 1251-1279
BCJ (1997). Structural provisions for building structures. Tokyo, Building Center of Japan
Boore, D.M. (1972). A note on the effect of simple topography on seismic SH waves. Bulletin of the Seismological Society of America 62(1): 275-284. https://doi.org/10.1785/BSSA0620010275
Bouchon, M. and Barker, J.S. (1996). Seismic response of a hill: the example of Tarzana, California. Bulletin of the Seismological Society of America 86(1A): 66-72. https://doi.org/10.1785/BSSA08601A0066
Bouckovalas, G.D. and Papadimitriou, A.G. (2005). Numerical evaluation of slope topography effects on seismic ground motion. Soil Dynamics and Earthquake Engineering 25(7-10): 547-558. https://doi.org/10.1016/j.soildyn.2004.11.008
Buech, F., Davies, T.R. and Pettinga, J.R. (2010). The little red hill seismic experimental study: topographic effects on ground motion at a bedrock-dominated mountain edifice. Bulletin of the Seismological Society of America 100(5A), 2219-2229. https://doi.org/10.1785/0120090345
BRIJSCE (1997). Development of earthquake disaster prevention in urban area. Sectional committee report on risk evaluation of earthquake motion amplification. Building Research Institute and Japan Society of Construction Engineering (in Japanese)
Çelebi, M. (1987). Topographical and geological amplifications determined from strong-motion and aftershock records of the 3 March 1985 Chile earthquake. Bulletin of the Seismological Society of America 77(4), 1147-1167. https://doi.org/10.1785/BSSA0770041147
CEN (2004). EuroCode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings. European Committee for Standardization, Brussels
Chávez-García, FJ., Sánchez, L.R. and Hatzfeld, D. (1996). Topographic site effects and HVSR. A comparison between observations and theory. Bulletin of the Seismological Society of America 86(5), 1559-1573. https://doi.org/10.1785/BSSA0860051559
Dakoulas, P. and Gazetas, G. (1985). A class of inhomogeneous shear models for seismic response of dams and embankments. Soil Dynamics and Earthquake Engineering 4(4): 166-182. https://doi.org/10.1016/0261-7277(85)90037-3
Diaz-Segura, E.G. (2015). Effect of MASW field configuration on the estimation of shear wave propagation velocity in a sloped terrain. Géotechnique Letters 5(1): 21-27. https://doi.org/10.1680/geolett.14.00070
Diaz-Segura, E.G. (2016). Numerical estimation and horizontal-to-vertical spectral ratio measurements of characteristic site period of sloping terrains. Géotechnique Letters 6(2): 176-181. https://doi.org/10.1680/jgele.16.00009
Foti, S., Lai, C.G., Rix, G.J. and Strobbia, C. (2014). Surface wave methods for near-surface site characterization. CRC Press and Taylor & Francis Group
Géli, L., Bard, P.Y. and Jullien, B. (1988). The effect of topography on earthquake ground motion: a review and new results. Bulletin of the Seismological Society of America 78(1): 42-63. https://doi.org/10.1785/BSSA0780010042
ICC (2012). IBC International Building Code. International Code Council, USA
Idriss, I.M. and Seed, H.B. (1967). Response of earth banks during earthquakes. Journal of the Soil Mechanics Foundation Division 93 (SM3), 61-82
Kramer, S.L. (1996). Geotechnical earthquake engineering. Prentice Hall, NJ
Lermo, J. and Chávez-García, FJ. (1993). Site effect evaluation using spectral ratios with only one station. Bulletin of the Seismological Society of America 83(5), 1574-1594. https://doi.org/10.1785/BSSA0830051574
Matsushima, S., Hirokawa, T., De Martin, F., Kawase, H. and Sánchez-Sesma, FJ. (2014). The effect of lateral heterogeneity on horizontal-to-vertical spectral ratio of microtremors inferred from observation and synthetics. Bulletin of the Seismological Society ofAmerica 104(1), 381-393. https://doi.org/10.1785/0120120321
Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute 30(1), 25-33
Nogoshi, M. and Igarashi, T. (1971). On the amplitude characteristics of microtremor (part 2). Journal of the Seismological Society of Japan 24(1), 26-40. https://doi.org/10.4294/zisin1948.24.1_26
Paolucci, R. (2002). Amplification of earthquake ground motion by steep topographic irregularities. Earthquake Engineering and Structural Dynamics 31(10): 1831-1853. https://doi.org/10.1002/eqe.192
Tripe, R., Kontoe, S. and Wong, T.K.C. (2013). Slope topography effects on ground motion in the presence of deep soil layers. Soil Dynamics and Earthquake Engineering 50: 72-84. https://doi.org/10.1016/j.soildyn.2013.02.011
Wang, L., Luo, Y. and Xu, Y. (2012). Numerical investigation of Rayleigh-wave propagation on topography surface. Journal of Applied Geophysics 86, No. 11, 88-97. https://doi.org/10.1016/j.jappgeo.2012.08.001
Wood, C.M. (2013). Field investigation of topographic effects using mine seismicity. Doctoral thesis, University of Texas, Austin, USA

Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2017 Universidad Católica de la Santísima Concepción

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.