Influence of seismic excitation frequency content on the efficiency of a combined tuned damping

Authors

  • Gilda Espinoza Departamento de Ingeniería Civil y Ambiental, Universidad del Bío-Bío.
  • Álvaro Suazo Departamento de Ingeniería Civil y Ambiental, Universidad del Bío-Bío.
  • Francisco Vergara Departamento de Ingeniería Civil y Ambiental, Universidad del Bío-Bío.
  • José Cantillana Departamento de Ingeniería Civil y Ambiental, Universidad del Bío-Bío.

DOI:

https://doi.org/10.21703/0718-2813.2023.34.2445

Keywords:

CTD, TMD, TLCD, optimization, stochastic analysis, seismic protection.

Abstract

In this investigation the behaviour of a linear structure of one degree of freedom is analysed, which is controlled by a tuned combined damper (ACS). This consists of two devices, a tuned mass damper (AMS) and a tuned liquid column damper (ACLS). The ACS is subjected to a stochastic seismic excitation in order to analyse the influence of the frequency content on the efficiency of the device. As a measure of efficiency, the percentage of reduction of the displacement standard deviation of the main system is considered. The optimized parameters of each device are the frequency and damping in the case of the AMS, as well as the frequency and pressure drop coefficient for the ACLS. A sensitivity analysis of the optimal parameters of the ACS is carried out, with respect to the mass ratio, period of the main structure and frequency content of the excitation. The main conclusions obtained are that the efficiency of the ACS DHW depends on the frequency content of the excitation. Furthermore, it increases as the mass ratio increases, independent of the frequency content of the excitation. On the other hand, ACS is less efficient for more flexible structures.

References

Chakraborty, S., Debbarma, R. and Marano, G.C. (2012). Performance of tuned liquid column dampers considering maximum liquid motion in seismic vibration control of structures. Journal of Sound and Vibration 331(7), 1519–1531

Clough, R. and Penzien, J. (1975). Dynamics of structures. McGraw-Hill, New York, USA.

Crandall, S.H. and, Mark, W.D. (1963). Random vibration in Mechanical Engineering. Academic Press: New York, USA

Den Hartog, J.P. (1956). Mechanical vibrations. Fourth ed., Dover Publications, New York, USA

Di Matteo, A., Lo Iacono, F., Navarra, G. and Pirrotta, A. (2015). Optimal tuning of tuned liquid column damper systems in random vibration by means of an approximate formulation. Meccanica 50, 795-808

Espinoza, G., Quinteros, C., Gajardo, K., Suazo, A. and Quijada, S. (2021a). Eficiencia de un amortiguador de columna de líquido sintonizado considerando una excitación sísmica de bajo contenido de frecuencias e incertidumbre. Obras y Proyectos 29, 54-66

Espinoza, G., Saavedra J., Gajardo, K., Suazo, A. y Cifuentes C. (2021b) Eficiencia de un amortiguador de columna de líquido considerando una excitación sísmica de alto contenido de frecuencias e incertidumbre. Obras y Proyectos 29, 67-79

Espinoza, G., Sagredo, G. y Suazo, A. (2020a). Análisis de la eficiencia de un amortiguador combinado sintonizado con incertidumbre en los parámetros sometido a una excitación sísmica de alto contenido de frecuencias. Obras y Proyectos 28, 58-67

Espinoza, G., Rivas, S. y Suazo, A. (2020b). Análisis de la eficiencia de un amortiguador combinado sintonizado con incertidumbre en los parámetros sometido a excitaciones sísmicas de bajo contenido de frecuencias. Obras y Proyectos 28, 68-77

Espinoza, G., Carrillo, C. and Suazo, A. (2018). Analysis of a tuned liquid column damper in non-linear structures subjected to seismic excitations. Latin American Journal of Solids and Structures 15(7), e91

Frahm, H. (1909). Device for damping vibrations of bodies. USA patent 0989958A

Kamel, A.G. and Basily, R.M. (2021). Optimal passive structural control under extreme earthquake excitations using a combined pendulum tuned mass damper. Journal of Applied Mathematics and Computational Mechanics 20(4), 51-64

NCh2745 (2013). Análisis y diseño de edificios con aislación sísmica. Instituto Nacional de Normalización INN, Santiago, Chile

Ormondroyd, J. and Den Hartog, J. (1928). The theory of dynamic vibration absorber. Transactions of the American Society of Mechanical Engineers Journal of Applied Mechanics 50(7), 9-22

Rozas, L., Boroschek, R.L., Tamburrino, A. and Rojas, M. (2016). A bidirectional tuned liquid column damper for reducing the seismic response of buildings. Structural Control and Health Monitoring 23(4), 621-640

Saitua, F., Lopez-Garcia, D., and Taflanidis, A.A. (2018). Optimization of height-wise damper distributions considering practical design issues. Engineering Structures 173, 768-786

Sakai, F., Takaeda, S. and Tamaki, T. (1989). Tuned liquid column damper - New type device for suppression of building vibrations. First International Conference on High-Rise Buildings, Nanjing, China, 926-931

Sgobba, S. and Marano, G.C. (2010). Optimum design of linear tuned mass dampers for structures with nonlinear behaviour. Mechanical Systems and Signal Processing 24(6), 1739-1755

Shum, K.M. (2009). Closed form optimal solution of a tuned liquid column damper for suppressing harmonic vibration of structures. Engineering Structures 31(1), 84-92

Wang, L., Zhao, X. and Zheng, Y.M. (2016). A combined tuned damper and an optimal design method for wind-induced vibration control for super tall buildings. The Structural Design of Tall and Special Buildings 25(10) 468-502

Yalla, S.K. and Kareem, A. (2000). Optimum absorber parameters for tuned liquid column dampers. Journal of Structural Engineering 126(8) 906-915

Published

2023-12-13

How to Cite

Espinoza, G. ., Suazo, Álvaro, Vergara, F. ., & Cantillana, J. (2023). Influence of seismic excitation frequency content on the efficiency of a combined tuned damping. Obras Y Proyectos, (34), 40–54. https://doi.org/10.21703/0718-2813.2023.34.2445

Issue

Section

Articles