Validation of the structural analysis in the Great Soviet Panel integrating dynamic and static linear seismic procedures
DOI:
https://doi.org/10.21703/0718-51620202203208Keywords:
Great Soviet Panel, Precast concrete, Linear static analysis, Linear dynamic analysis, Equivalent Static Method, Response Spectrum Method, Time Record MethodAbstract
Some procedures that model seismic phenomena consider them as events of a dynamic nature, but there are others that estimate a static nature. At the same time, the non-linear behaviour of the structures can be considered or not in them. It cannot be pointed out that one procedure is completely superior to the others. However, the convenience of integrating them in practice can be argued. In this investigation, taking into account the previous arguments, several procedures are used, namely, the Equivalent Static Method, the Response Spectrum Method and the Time Record Method. The aim is validating the structural analysis in the critical elements of the U-142-143 building, built with the prefabricated Great Soviet Panel system in the city of Santiago de Cuba. After obtaining the calculation requirements, the critical elements turned out to be the transverse exterior panels. In these elements, the shear, axial and maximum moments reach higher values for the Time Record Method; even exceeding the absolute maximum values obtained with the application of the Equivalent Static Method. The combinations of loads that consider predominant seismic actions in the direction of the panels or orthogonal to them, combined with maximum or minimum gravitational loads, are determining factors in the analysis. However, the load combination for which the vertical seismic component predominates is not dominant in the analysis. Likewise, a structural behaviour associated with buildings with irregularities in plan is corroborated.
References
ACI318 (2019). Building code requirements for structural concrete. American Concrete Institute ACI. Washington DC, USA.
Belleri, A., Moaveni, B. and Restrepo, J.I. (2014). Damage assessment through structural identification of a three‐story large‐scale precast concrete structure. Earthquake Engineering & Structural Dynamics 43(1), 61-76.
CSI (2018a). ETABS v18. Computers & Structures, Inc. CSI. Structural and earthquake engineering software. USA.
CSI (2018b). Structural analysis program SAP2000 v20. Integrated software for structural analysis and design. Computers & Structures, Inc. CSI. Structural and earthquake engineering software. USA.
Devecsery, D., Chen, P.M., Flinn, J. and Narayanasamy, S. (2018). Optimistic hybrid analysis: accelerating dynamic analysis through predicated static analysis. Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems, Williamsburg VA, USA, 348-362.
FEMA P-154 (2015). Rapid visual screening of buildings for potential seismic hazards: A Handbook. Federal Emergency Management Agency FEMA. Washington DC, USA.
FEMA 273 (1997). NEHRP guidelines for the seismic rehabilitation of buildings. Federal Emergency Management Agency FEMA, Washington DC, USA.
Henry, R.S., Zhou, Y., Lu, Y., Rodgers, G.W., Gu, A., Elwood, K.J. and Yang, T.Y. (2021). Shake‐table test of a two‐storey low‐damage concrete wall building. Earthquake Engineering & Structural Dynamics 50(12), 3160-3183.
Herrera, I., Vielma, J.C., Ugel, R. y Martínez, Y. (2012). Evaluación del comportamiento sismorresistente y diseño óptimo de un edificio existente de concreto armado de baja altura. Revista Ingeniería UC 19(3), 52-65.
Lewicki, B. (1968). Edificios de viviendas prefabricadas con elementos de grandes dimensiones. Arkady, Polonia.
Medina, C. y Galarza, D. (2020). Análisis sísmico comparativo de una estructura irregular torsionalmente flexible aplicando NSP, MPA, NLRHA. Revista Ingeniería de Construcción 35(3), 257-274.
NC46 (2017). Construcciones sismo resistentes. Requisitos básicos para el diseño y construcción. Comité Estatal de Normalización, La Habana, Cuba.
Oliva, R. (2001). Determinación experimental del periodo fundamental de vibración de estructuras para la evaluación de la vulnerabilidad en Cuba. Grupo de Ingeniería Sísmica. Centro Nacional de Investigaciones Sismológicas, Cuba.
Pinzón, O.E. (2015). Análisis no lineal de edificaciones. Conceptos básicos e implicaciones. 3er Simposio de Ingeniería de Materiales y Estructuras, Bogotá, Colombia.
Polyakov, S. (1974). Design of earthquake resistant structures. MIR Publishers, Moscow, USSR.
Salas, A. y Hernández, A. (2021). Análisis comparativo entre el método estático equivalente y el método de análisis modal en estructuras regulares de muros portantes de hormigón armado. Revista de Arquitectura e Ingeniería 15(1), 1-8.
Seismosoft (2019). Earthquake software for signal processing of strong-motion data. Seismosignal v5.1, Seismomatch. Earthquake engineering seismic solutions.
Socarrás, Y.C. (2020). Procedimiento para la evaluación de daños sísmicos potenciales en el sistema prefabricado Gran Panel Soviético. Tesis doctoral, Universidad de Oriente, Cuba.
Socarrás, Y.C. y Álvarez, E.R. (2021a). Vulnerabilidad sísmica del sistema estructural prefabricado gran panel Soviético en edificios deteriorados y transformados. Obras y Proyectos 30, 60-73.
Socarrás, Y.C. y Álvarez, E.R. (2021b). Zonas críticas en edificaciones construidas con el Gran Panel Soviético. Análisis estructural versus Diagnóstico. II Convención Internacional Ciencia y Conciencia. Universidad de Oriente, Santiago de Cuba, Cuba.
Socarrás-Cordoví, Y.C., González-Diaz, L., Alvarez-Deulofeu, E., González -Fernández, M.M., Roca-Fernández, E. and Torres-Shoembert, R. (2020a). Valuation of the durability of the concrete used in the precast Great Soviet Panel System. Revista Facultad de Ingeniería 29(54), e10486.
Socarrás, Y.C., González, L., Alvarez, E., González, M.M. y Roca, E. (2020b). Evaluación de la calidad del hormigón en edificaciones construidas con el sistema prefabricado gran panel soviético. Tecnología Química 40(2), 264-277.
Socarrás, Y., Álvarez, E. and Lora, F. (2021a). Changes in the fundamental periods of buildings constructed with the Great Soviet Panel. ESTOA 10(19), 220-235.
Socarrás, Y., Álvarez, E. and Lora, F. (2021b). Forecasts on the seismic behavior of buildings constructed with the Great Soviet Panel. DYNA 88(216), 145-151.
Socarrás-Cordoví, Y.C., González-Diaz, L., Álvarez-Deulofeu, E. (2022). Significant reductions in the area in corroded steel and its repercussion in prefabricated large-panel buildings. Revista Facultad de Ingeniería 31(59), e13110.
Ujianto, M., Mohd Ali, A.Z. and Solikin, M. (2019). Structural behavior of precast concrete wall panels due to dynamic load: A review. AIP Conference Proceedings 2114(1), 050013.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Universidad Católica de la Santísima Concepción

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


