Modelling steel-concrete interaction using the extended finite element method

Authors

  • Rodrigo Gutiérrez Institute of Reinforced Concrete Structures and Building Materials, Karlsruhe Institute of Technology, Germany
  • Lothar Stempniewsk Institute of Reinforced Concrete Structures and Building Materials, Karlsruhe Institute of Technology, Germany https://orcid.org/0000-0002-7789-0027
  • Wagner Fleming Departamento de Ingeniería Civil, Universidad Católica del Norte, Chile https://orcid.org/0000-0002-6772-7971

DOI:

https://doi.org/10.4067/s0718-28132018000200006

Keywords:

reinforcement, finite element method, bond laws, bond elements, X-FEM, pull-out test

Abstract

The extended finite element method (X-FEM) is used as an alternative for the modelling of the bond behaviour  between reinforcement and the surrounding concrete in reinforced concrete structures, through either reinforcing bars, fibres or others. The interface of composite materials introduces a discontinuity and, therefore, can be  umerically modelled using X-FEM.This method is capable to model discontinuities without modifying the discretization by the addition of new degrees of freedom to the standard finite element approximation. Bond elements (or cohesive elements) are presented in order to be compared with the proposed alternative. The results obtained are also compared to reference solutions, showing a good agreement.

Author Biographies

  • Rodrigo Gutiérrez, Institute of Reinforced Concrete Structures and Building Materials, Karlsruhe Institute of Technology, Germany

    Institute of Reinforced Concrete Structures and Building Materials, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76128 Karlsruhe, Germany, rodrigo.gutierrez@partner.kit.edu.

  • Lothar Stempniewsk, Institute of Reinforced Concrete Structures and Building Materials, Karlsruhe Institute of Technology, Germany

    Institute of Reinforced Concrete Structures and Building Materials, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76128 Karlsruhe, Germany, lothar.stempniewski@kit.edu.

  • Wagner Fleming, Departamento de Ingeniería Civil, Universidad Católica del Norte, Chile

    Departamento de Ingeniería Civil, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta, Chile, wfleming@ucn.cl.

References

Barenblatt, G.I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics 7, 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2

Belytschko, T. and Black, T. (1999). Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5), 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5%3C601::AID-NME598%3E3.0.CO;2-S

Dolbow, J. (1999). An extended finite element method with discontinuous enrichment for applied mechanics. PhD thesis, Northwestern University, USA

Dugdale, D.S. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids 8(2), 100-104. https://doi.org/10.1016/0022-5096(60)90013-2

Fédération Internationale du Béton (2012). Model Code 2010: Final draft. Switzerland: International Federation for Structural Concrete (fib): Lausanne.

Fleming, W. (2011). Quasi static and dynamic crack propagation in brittle materials with XFEM. PhD thesis, Universität Kassel, Germany

Lettow, S. (2011). Ein Verbundelement für nichtlineare Finite Elemente Analysen - Anwendung auf Übergreifungsstöβe. PhD thesis, Universitat Stuttgart, Germany

Möes, N. and Belytschko, T. (2002). Extended finite element method for cohesive crack growth. Engineering Fracture Mechanics 69(7), 813-833. https://doi.org/10.1016/S0013-7944(01)00128-X

Möes, N., Dolbow, J. and Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1%3C131::AID-NME726%3E3.0.CO;2-J

Radtke, F.K.F., Simone, A. and Sluys, L.J. (2010). A partition of unity finite element method for obtaining elastic properties of continua with embedded thin fibres. International Journal for Numerical Methods in Engineering 84(6), 708-732. https://doi.org/10.1002/nme.2916

van den Bosch, M., Schreurs, P. and Geers, M. (2006). An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion. Engineering Fracture Mechanics 73(9), 1220-1234. https://doi.org/10.1016/j.engfracmech.2005.12.006

Downloads

Published

2018-12-01 — Updated on 2018-12-01

Issue

Section

Articles

How to Cite

Modelling steel-concrete interaction using the extended finite element method. (2018). Obras Y Proyectos, 24, 6-12. https://doi.org/10.4067/s0718-28132018000200006