Técnicas de corte para la caracterización geomecánica de materiales granulares gruesos
DOI:
https://doi.org/10.4067/S0718-28132020000200024Palabras clave:
Materiales granulares gruesos, Método de corte, Caracterización geotécnica, Escalamiento de tamaño, Resistencia al corteResumen
El estudio de materiales granulares gruesos ha sido un gran desafío para la ingeniería geotécnica. A pesar del uso intensivo de materiales granulares gruesos MGG alrededor del mundo, por ejemplo en presas de enrocado y lastres de mina, la caracterización geotécnica de estos materiales sigue siendo un tema importante en la ingeniería práctica que requiere más investigación. Existen normas sobre MGG para aplicaciones muy particulares y se han propuesto métodos de escalamiento de tamaño. Sin embargo, los métodos de escalamiento de tamaño son adecuados solo bajo ciertas condiciones. En este artículo se analizan las técnicas de corte, las cuales permiten realizar una caracterización geotécnica de forma simple. Las técnicas de corte se puede dividir en: el método de corte, método de matriz y corte/reemplazo, los cuales son analizados en detalle en términos de su efectividad para la caracterización geomecánica de MGG. Como conclusión principal, estas tres técnicas están limitadas en su uso bajo razones de corte pequeñas (3 < r < 8), que es la razón del tamaño máximo de partícula de la gradación original y la muestra cortada. Finalmente, se proporcionan recomendaciones para el uso de porcentajes y razones de corte.
Referencias
Al-Hussaini, M. (1983). Effect of particle size and strain conditions on the strength of crushed basalt. Canadian Geotechnical Journal 20(4), 706-717.
ASTM D4718 (2015). Standard practice for correction of unit weight and water content for soils containing oversize particles. ASTM International, West Conshohocken, USA.
ASTM D5030 (2013). Standard test methods for density of soil and rock in place by the water replacement method in a test pit. ASTM International, West Conshohocken, USA.
Bard, E., Anabalón, M.E. and Campaña, J. (2012). Waste rock behavior at high pressures: dimensioning high waste rock dumps. In: Multiscale Geomechanics: From Soil to Engineering Projects, P.Y. Hicher (ed.), ISTE/Wiley, UK, chapter 4, 86-112.
Bareither, C.A., Benson, C.H. and Edil, T.B. (2008). Comparison of shear strength of sand backfills measured in small-scale and large-scale direct shear tests. Canadian Geotechnical Journal 45(9), 1224-1236.
Bolton, M.D., Fragaszy, R.J. and Lee, D.M. (1991). Broadening the specification of granular fills. Transportation Research Record 1309, 35-41.
Charles, J.A. (1991). Laboratory shear strength tests and the stability of rockfill slopes. In Advances in Rockfill Structures, das Neves E.M. (ed.), NATO ASI Series (Series E: Applied Sciences), vol. 200. Springer, Dordrecht, 53-72.
De la Hoz, K. (2007). Estimation of the shear strength parameters of coarse granular materials. MSc thesis, University of Chile, Santiago, Chile (in Spanish).
Donaghe, R.T. and Townsend, F.C. (1976). Scalping and replacement effects on the compaction characteristics of earthrock mixtures. Soil Specimen Preparation for Laboratory Testing, American Society for Testing and Materials ASTM, Philadelphia, USA, ASTM STP 599, 248-277.
Donaghe, R.T. and Townsend, F.C. (1973). Compaction characteristics of earth-rock mixtures. Report 1, Vicksburg Silty Clay and DeGray Dam Clayey Sandy Gravel. Miscellaneous paper No. S-73-25, U.S. Army Engineer Waterways Experiment Station, Vicksburg, USA.
Donaghe, R.T. and Cohen, M.W. (1978). Strength and deformation properties of rock fill. Technical Report No. WES-TR-S-78-1. US Army Corps of Engineers, Waterways Experiment Station, Soils and Pavement Laboratory, Vicksburg, USA.
Donaghe, R.T. and Torrey, V.H. (1985). Strength and deformation properties of earth-rock mixtures. Technical Report GL-85-9, Geotechnical Laboratory, US Army Corps of Engineers, Waterways Experiment Station, Vicksburg, USA.
Donaghe, R.T. and Torrey, V.H. (1979). Scalping and replacement effects on strength parameters of earth-rock mixtures. 7th European Conference on Soil Mechanics and Foundation Engineering: Design Parameters in Geotechnical Engineering, Brighton, UK, vol. 2, 29-34.
Dorador, L. (2010). Experimental analysis of the methodologies of homothetic and shear curves in the geotechnical property evaluation of coarse soils. MSc thesis, University of Chile, Santiago, Chile (in Spanish).
Dorador, L. (2018). A revision of the parallel particle size distribution methodology or homothetic curves applied to the geotechnical characterization of coarse granular materials. X Chilean Geotechnical Conference, Valparaiso, Chile, paper ID1259 (in Spanish).
Dorador, L. and Villalobos, F.A. (2020). Analysis of the geomechanical characterization of coarse granular materials using the parallel gradation method. Obras y Proyectos 27, 50-63.
Dorador, L., De la Hoz K., Salazar F. and Urbina F. (2018). Considerations in the geotechnical characterization of coarse granular materials. X Chilean Geotechnical Conference, Valparaiso, Chile, paper ID1315 (in Spanish).
Flora, A. and Modoni, G. (1997). Upgrading equipment and procedures for stress path triaxial testing of coarse-grained materials. Geotechnical Testing Journal 20(4), 459-469.
Fragaszy, R.J., Su, J., Siddiqi, F.H. and Ho, C.L. (1992). Modeling strength of sandy gravel. Journal of Geotechnical Engineering 118(6), 920-935.
Fragaszy, R.J., Su, W. and Siddiqi, F.H. (1990). Effects of oversize particles on the density of clean granular soils. Geotechnical Testing Journal 13(2), 106-114.
Hawley, M. and Cunning, J. (2017). Introduction. In Guidelines for Mine Waste Dump and Stockpile Design. Hawley, M. and Cunning, J. (eds.), CSIRO Publishing, Australia, 1-12.
Jernigan, R.L. (1998). The physical modeling of soils containing oversized particles. PhD thesis, University of Colorado at Boulder, USA.
Lambe, T.W. and Whitman, R.V. (1979). Soil mechanics. SI version. John Wiley & Sons, New York, USA.
Leslie, D.D. (1963). Large scale triaxial tests on gravelly soils. Second PanAmerican Conference on Soil Mechanics and Foundation Engineering, Brazil, vol. 1, 181-202.
McCarter, M.K. (ed.) (1985). Design of non-impounding mine waste dumps. Society of Mining Engineering and the American Institute of Mining, Metallurgical and Petroleum Engineers, New York, USA.
McLemore, V.T., Fakhimi, A., van Zyl, D., Ayakwah, G.F., Anim, K., Boakye, K., Ennin, F., Felli, P., Fredlund, D., Gutierrez, L.A.F., Nunoo, S., Tachie-Menson, S. and Viterbo, V.C. (2009). Literature review of other rock piles: characterization, weathering, and stability. Questa Rock Pile Weathering Stability Project. New Mexico Bureau of Geology and Mineral Resources. New Mexico Tech, USA.
Nicks, J.E., Gebrenegus, T. and Adams, M.T. (2015). Strength characterization of open-graded aggregates for structural backfills. Publication No. FHWA-HRT-15-034. US Department of Transportation, Federal Highway Administration, USA.
Ovalle, C., Linero, S., Dano, C., Bard, E., Hicher, P.Y. and Osses, R. (2020). Data compilation from large drained compression triaxial tests on coarse crushable rockfill materials. Journal of Geotechnical and Geoenvironmental Engineering 146(9), 06020013.
Parkin, A.K. (1991). Rockfill modelling. In Advances in Rockfill Structures, das Neves E.M. (ed.), NATO ASI Series (Series E: Applied Sciences), vol. 200. Springer, Dordrecht, 35-51.
Seif El Dine, B., Dupla, J.C., Frank, R., Canou, J. and Kazan, Y. (2010). Mechanical characterization of matrix coarse-grained soils with a large-size triaxial device. Canadian Geotechnical Journal 47(4), 425–438.
Siddiqi, F.H. (1984). Strength evaluation of cohesionless soils with oversize particles. PhD thesis, University of California Davis, USA.
Simoni, A. and Houlsby, G.T. (2006). The direct shear strength and dilatancy of sand-gravel mixtures. Geotechnical and Geological Engineering 24(3), 523–549.
Su, W. (1989). Static strength evaluation of cohesionless soils with oversize particles. PhD thesis, Washington State University, USA.
Valenzuela, L., Bard, E., Campaña, J. and Anabalón, M.E. (2008). High waste rock dumps—Challenges and developments. First International Seminar on the Management of Rock Dumps, Perth, Australia, 65-78.
Zeller, J. and Wullimann, R. (1957). The shear strength of the shell materials for the Göschenenalp Dam, Switzerland. 4th International Conference on Soil Mechanics and Foundation Engineering, London, UK, vol. 2, 399-415.
Descargas
Publicado
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.


