Análisis transiente de la demanda de agua uniformemente distribuida
DOI:
https://doi.org/10.4067/S0718-28132019000200043Palabras clave:
Golpe de ariete, Método de las características MC, Demanda uniformemente distribuida DUDResumen
Se analiza el flujo transitorio en redes de tuberías generado por demandas uniformemente distribuidas (DUDs). Se muestra un algoritmo numérico original, basado en el Método de las Características (MC), que permite incluir el enfoque de la DUD insensible a la presión en los nodos internos de una tubería sin modificar su discretización original. Los resultados obtenidos por la DUD se comparan con el enfoque que distribuye el 50% de la demanda total de agua en los extremos aguas arriba y aguas abajo de la tubería. La conclusión general es que el enfoque de la DUD es útil para conocer el comportamiento transitorio de una tubería cuando cada uno de sus nodos internos tiene una demanda de agua, aunque su formulación sea preliminar y requiera algunas extensiones que le permitan abordar el problema de manera más adecuada.
Referencias
Chaudhry, M.H. (2014). Transient-flow equations. In Applied Hydraulic Transients. Springer, New York, USA, 35-64.
Chaudhry, M.H. (1979). Applied hydraulic transients. Van Nostrand Reinhold, New York, USA.
Chaudhry, M.H. (1968). Boundary conditions for analysis of waterhammer in pipe systems. Thesis of Applied Science, The University of British Columbia, Canada.
Filion, Y., Adams, B. and Karney, B. (2007). Cross correlation of demands in water distribution network design. Journal of Water Resources Planning and Management 133(2), 137-144.
Gad, A.A. and Mohammed, H.I. (2014). Impact of pipe network simplification on water hammer phenomenon. Sadhana 39(5), 1227-1244.
Ghidaoui, M.S., Zhao, M., McInnis, D.A. and Axworthy, D.H. (2005). A review of water hammer theory and practice. Applied Mechanics Reviews 58, 49-76.
Izquierdo, J., Campbell, E., Montalvo, I., Pérez-García, R. and Ayala-Cabrera, D. (2013). Error analysis of some demand simplifications in hydraulic models of water supply networks. Abstract and Applied Analysis 2013, article ID 169670, 1-13.
Jung, B.S., Boulos, P.F. and Wood, D.J. (2009). Effect of pressure-sensitive demand on surge analysis. Journal of the American Water Works Association 101(4), 100-111.
Jung, B.S., Boulos, P.F. and Wood, D.J. (2007). Pitfalls of water distribution model skeletonization for surge analysis. Journal of the American Water Works Association 99(12), 87-98.
Kanakoudis, V. and Gonelas, K. (2015). Accurate water demand spatial allocation for water networks modelling using a new approach. Urban Water Journal 12(5), 362-379.
Karney, B.W. (1984). Analysis of fluid transients in large distribution networks. PhD thesis, University of British Columbia, Vancouver, Canada.
Karney B.W and McInnis D. (1992). Efficient calculation of transient flow in simple pipe networks. Journal of Hydraulic Engineering 118(7), 1014-1030.
McInnis, D. and Karney, B.W. (1995). Transients in distribution networks: field tests and demand models. Journal of Hydraulic Engineering 121(3), 218-231.
Mohammed, H.I. and Gad, A.A. (2012). Effect of pipe network simplification on water hammer phenomenon. Journal of Engineering Sciences 40(6), 1625-1647.
Rao, R.M., Ahmed, Z., Ellamraj, Y. and Reddy, R.M. (2015). EPAnet demand calculation methods and implications. International Journal of Scientific Engineering and Research (IJSER) 4(11), 73-76.
Salgado, R., Rojo, J. and Zepeda, S. (1994). Extended gradient method for fully non-linear head and flow analysis in pipe networks. Integrated Computer Applications in Water Supply, Methods and Procedures for Systems Simulation and Control. B. Coulbeck (ed.), John Wiley & Sons, Inc. NY, USA. vol. 1, 49-60.
Salgado, R., Twyman, C. and Twyman, J. (1992). Development of a hybrid algorithm for fast transient analysis in pipe networks. XV Congreso Latinoamericano de Hidráulica IAHR, 483-493.
Shamrukh, M. (2005). Applicability of using the multiple lateral demands for designing water networks. First Ain Shams University International Conference on Environmental Engineering, Cairo, Egypt, 562-572.
Tsakiris, G. and Spiliotis, M. (2012). Applying resilience indices for assessing the reliability of water distribution systems. Water Utility Journal 3, 19-27.
Twyman, J. (2018). Transient flow analysis using the method of characteristics MOC with five-point interpolation scheme. Obras y Proyectos 24, 62-70.
Twyman, J. (2017). Water hammer analysis in a water distribution system. Ingeniería del Agua 21(2), 87-102.
Twyman, J. (2016a). Golpe de ariete en una red de distribución de agua. XXVII Congreso Latinoamericano de Hidráulica IAHR Spain Water and IWHR China, Lima, Perú.
Twyman, J. (2016b). Wave speed calculation for water hammer analysis. Obras y Proyectos 20, 86-92.
Watters, G.Z. (1984). Analysis and control of unsteady flow in pipelines. Butterworth, 2nd edition, Boston, USA.
Watters G.Z. (1979). Modern analysis and control of unsteady flow in pipelines. Ann Arbor Science. Michigan, USA.
Wu, Z.Y. and Walski, T. (2006). Pressure dependent hydraulic modelling for water distribution systems under abnormal conditions. IWA World Water Congress and Exhibition, Beijing, China.
Wylie, B. (1986). Liquid transient flow in piping systems. In Advancements in Aerodynamics, Fluid Mechanics and Hydraulics, ASCE, Arndt, R.E., Stefan, H.G., Farell, C. and Peterson, S.M. (eds.), 50-57.
Wylie, B. and Streeter, V.L. (1993). Fluid transients in systems. Pearson. 1st. Edition.
Wylie, B. and Streeter, V.L. (1978). Fluid transients. McGrawHill, International Book Company.
Descargas
Publicado
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.


