Efectos de topografía de cañón en movimientos sísmicos: Evaluación de diferentes perfiles de rigidez del suelo

Autores/as

DOI:

https://doi.org/10.4067/S0718-28132019000100051

Palabras clave:

Efecto topográfico, Amplificación en suelos, Modelamiento numérico, Elementos finitos

Resumen

El efecto de la topografía en sismos ha sido ampliamente observado durante numerosos terremotos. Varios estudios han presentado evidencia observacional de terremotos destructivos, donde la intensidad del daño es mayor en la vecindad de cerros y cercanía de pendientes. Además, un importante número de análisis numéricos ha tenido por objetivo reproducir este fenómeno utilizando diferentes metodologías, por ejemplo, Elementos Finitos, Diferencias Finitas y Elementos de Contorno. La mayoría de estas investigaciones involucran estudios paramétricos, considerando diversas variables. Sin embargo, estos estudios usualmente consideran perfiles de suelos con rigidez homogénea en profundidad, lo que no es necesariamente realista. Este artículo tiene por objetivo investigar los efectos de topografía de cañón en sismos considerando diferentes perfiles de rigidez en suelo sobre roca rígida. Tres perfiles de suelo con variación de rigidez en profundidad son examinados y comparados con el caso de un perfil de rigidez uniforme. Un caso adicional de dos capas de suelo sobre un semiespacio también ha sido considerado. Los análisis numéricos se llevaron a cabo con Imperial College Finite Element Program ICFEP en el dominio del tiempo, considerando diferentes perfiles del tipo lineal – elásticos de rigidez sobre roca. Las solicitaciones sísmicas correspondieron a pulsos armónicos modificados por un filtro temporal por Saragoni y Hart (1973). Estas ondas con periodos característicos Tp en un rango de 0.1 s a 2 s son analizadas. Este estudio confirma que la respuesta normalizada máxima se localiza entre el primer y segundo periodo natural correspondiente a un perfil unidimensional en condición de campo libre de acuerdo a otras investigaciones recientes. Además, la amplitud de la amplificación topográfica muestra modificaciones para los distintos perfiles de suelo examinados.

Referencias

Ambraseys, N.N. (1959). A note on the response of an elastic overburden of varying rigidity to an arbitrary ground motion. Bulletin of the Seismological Society of America 49(3), 211-220.

ASCE 7-02 (2005). Minimum design loads for buildings and other structures. American Society of Civil Engineers ASCE 7, ASCE Standard, SEI/ASCE 7-02, Reston, VA, USA.

Ashford, S.A., Sitar, N., Lysmer, J. and Deng, N. (1997). Topographic effects on the seismic response of steep slopes. Bulletin of the Seismological Society of America 87(3), 701-709.

Assimaki, D. and Mohammadi, K. (2017). On the complexity of seismic waves trapped in non-flat geologic features. 3rd International Conference on Performance Based Design in Earthquake Geotechnical Engineering PBD-III, Vancouver, Canada.

Assimaki, D. and Jeong, S. (2013). Ground-motion observations at hotel Montana during the M 7.0 2010 Haiti earthquake: Topography or soil amplification?. Bulletin of the Seismological Society of America 103(5), 2577–2590.

Assimaki, D., Gazetas, G. and Kausel, E. (2005). Effects of local soil conditions on the topographic aggravation of seismic motion: Parametric investigation and recorded field evidence from the 1999 Athens earthquake. Bulletin of the Seismological Society of America 95(3), 1059–1089.

Assimaki, D., Kausel, E. and Gazetas, G. (2005a). Soildependent topographic effects: A case study from the 1999 Athens earthquake. Earthquake Spectra 21(4), 929–966.

Assimaki, D. and Gazetas, G. (2004). Soil and topographic amplification on Canyon Banks and the 1999 Athens Earthquake. Journal of Earthquake Engineering 8(1), 1-43.

Bielak, J., Loukakis, K., Hisada, Y. and Yoshimura, C. (2003). Domain reduction method for three-dimensional earthquake modeling in localized regions, Part I: Theory. Bulletin of the Seismological Society of America 93(2), 817-824.

Boore, D.M. (1972). A note on the effect of simple topography on seismic SH waves. Bulletin of the Seismological Society of America 62(1), 275-284.

Bouchon, M. and Barker, J.S. (1996). Seismic response of a hill: the example of Tarzana, California. Bulletin of the Seismological Society of America 86(1A), 66-72.

Bouckovalas, G.D. and Papadimitriou, A.G. (2005). Numerical evaluation of slope topography effects on seismic ground motion. Soil Dynamics and Earthquake Engineering 25(7-10), 547-558.

Celebi, M. (1987). Topographical and geological amplifications determined from strong-motion and aftershock records of the 3 March 1985 Chile earthquake. Bulletin of the Seismological Society of America 77(4), 1147-1167.

Dobry, R., Oweis, I. and Urzua, A. (1976). Simplified procedures for estimating the fundamental period of soil profile. Bulletin of the Seismological Society of America 66(4), 1293-321.

Eurocode 8 (1998). Design of structures for earthquake resistance. Part 1: General rules, seismic actions and rules for buildings. European Standard EN 1998-1:2004, Brussels, Belgium.

Geli, L., Bard, P.Y. and Jullien, B. (1988). The effect of topography on earthquake ground motion: a review and new results. Bulletin of the Seismological Society of America 78(1), 42-63.

Hancox, G. and Perrin, N. (2011). Report on landslide reconnaissance flight on 24 February 2011 following the Mw 6.3 Christchurch earthquake of 22 February 2011. GNS Science immediate report, March 2011.

IBC (2003). International Building Code. International Code Council, Inc., Falls Church, VA, USA.

Kontoe, S., Zdravkovic, L. and Potts, D.M. (2009). An assessment of the domain reduction method as an advanced boundary condition and some pitfalls in the use of conventional absorbing boundaries. International Journal for Numerical and Analytical Methods in Geomechanics 33(3), 309-330.

Kottke, A. and Rathje, E. (2013). Technical manual for strata. Report No. 2008/10, Pacific Earthquake Engineering Research Center Berkeley, California.

Kuhlemeyer, R.L. and Lysmer, J. (1973). Finite element method accuracy for wave propagation problems. Journal of Soil Mechanics and Foundation Division 99(5), 421-427.

Pedersen, H., LeBrun, B., Hatzfield, D., Campillo, M. and Bard, P.Y. (1994). Ground motion amplitude across ridges. Bulletin of the Seismological Society of America 84(6), 1786-1800.

Potts, D.M. and Zdravković L.T. (1999). Finite element analysis in geotechnical engineering: theory. Thomas Telford, London.

Rathje, E.M., Bachhuber, J., Dulberg, R., Cox, B.R., Kottke, A., Wood, C., Green, R., Olson, S., Wells, D. and Rix, G. (2011). Damage patterns in Port-au-Prince during the 2010 Haiti Earthquake. Earthquake Spectra 27(S1), S117–S136.

Rizzitano, S., Cascone, E. and Biondi, G. (2014). Coupling of topographic and stratigraphic effects on seismic response of slopes through 2D linear and equivalent linear analyses. Soil Dynamics and Earthquake Engineering 67, 66-84.

Saragoni, G.R. and Hart, G.C. (1973). Simulation of artificial earthquakes. Earthquake Engineering and Structural Dynamics 2(3), 249-267.

Skiada, E., Kontoe, S., Stafford, P.J. and Potts D.M. (2018). Ground surface amplification for canyon topographies excited with bi-directional earthquake records. 16th European Conference on Earthquake Engineering, Thessaloniki, Greece.

Skiada, E., Kontoe, S., Stafford, P.J. and Potts, D.M. (2017). Canyon topography effects on ground motion. 16th World Conference on Earthquake 16WCEE, Santiago, Chile.

Skiada, E., Kontoe, S., Stafford, P.J. and Potts, D.M. (2017a). Ground motion amplification for canyon topographies with different input motions. 3rd International Conference on Performance Based Design in Earthquake Geotechnical Engineering PBD-III, Vancouver, BC, Canada.

Toro, G.R. (1995). Probabilistic models of site velocity profiles for generic and site-specific ground-motion amplification studies. Technical Report 779574. Upton, New York.

Tripe, R., Kontoe, S. and Wong, T.K.C. (2013). Slope topography effects on ground motion in the presence of deep soil layers. Soil Dynamics and Earthquake Engineering 50, 72-84.

Descargas

Publicado

2019-06-01

Número

Sección

Artículos

Cómo citar

Efectos de topografía de cañón en movimientos sísmicos: Evaluación de diferentes perfiles de rigidez del suelo. (2019). Obras Y Proyectos, 25, 51-58. https://doi.org/10.4067/S0718-28132019000100051