Interacción suelo-estructura en edificios de gran altura con subterráneos en Santiago, Chile
DOI:
https://doi.org/10.4067/S0718-28132019000100066Palabras clave:
Edificios de gran altura, Subterráneo, Interacción dinámica suelo-estructuraResumen
A la fecha, en el mundo existen cerca de 935 edificios con más de 200 m de altura. En Sudamérica, La Torre Costanera Center, Chile, con 300 m de altura, es un ejemplo de estas edificaciones. Las investigaciones y los códigos de diseño reconocen que en edificaciones de gran altura la interacción dinámica suelo-estructura (DSSI) es importante y puede modificar la respuesta sísmica respecto a estimaciones de modelos simplificados convencionalmente empleados en los análisis y códigos de diseño estructural. Las investigaciones muestran la necesidad de considerar apropiadamente variables como la profundidad de los subterráneos, el tipo de suelo alrededor de la subestructura, la altura de la edificación y las características de la demanda sísmica. En este artículo se evalúa el comportamiento sísmico de una edificación de gran altura con sótanos profundos considerando DSSI. El análisis emplea modelamiento directo bidimensional de elementos finitos no-lineales considerando las características de una edificación de gran altura con sótanos en el contexto chileno. Los principales resultados caracterizan los esfuerzos laterales símicos en los muros de retención de subterráneos y las diferencias entre la demanda sísmica de campo libre y a nivel del sello de fundación.
Referencias
ACI-318 (2005). Building code requirements for structural concrete and commentary (318-05). Detroit, Michigan, USA.
Al Atik, L. and Sitar, N. (2010). Seismic earth pressures on cantilever retaining structures. Journal of Geotechnical and Geoenvironmental Engineering 136(10), 1324–1333.
ASCE (2013). Minimum design loads for buildings and other structures. Structural Engineering Institute SEI of the American Society of Civil Engineers ASCE, Reston, VA, USA.
Avilés, J. and Pérez-Rocha, L.E. (1998). Effects of foundation embedment during building-soil interaction. Earthquake Engineering & Structural Dynamics 27(12), 1523-1540.
Avilés, J. and Pérez-Rocha, L.E. (1996). Evaluation of interaction effects on the system period and the system damping due to foundation embedment and layer depth. Soil Dynamics and Earthquake Engineering 15(1), 11-27.
Brandenberg, S.J., Mylonakis, G. and Stewart, J.P. (2015). Kinematic framework for evaluating seismic earth pressures on retaining walls. Journal of Geotechnical and Geoenvironmental Engineering 141(7), 04015031.
Brinkgreve, R.B.J., Kumarswamy, S., Swolfs, W.M. and Foria, F. (2018). Plaxis 2D Introductory: Manual General Information. Delft University of Technology and Plaxis bv, The Netherlands.
FEMA 450 (2003). NEHRP recommended provisions for seismic regulations for new buildings and other structures. National Earthquake Hazards Reduction Program NEHRP, Building Seismic Safety Council. Washington, D.C., USA.
Kausel, E. (2010). Early history of soil-structure interaction. Soil Dynamics and Earthquake Engineering 30(9), 822-832.
Kim, S. and Stewart, J.P. (2003). Kinematic soil-structure interaction from strong motion recordings. Journal of Geotechnical and Geoenvironmental Engineering 129(4), 323–335.
Mikola, R.G., Candia, G. and Sitar, N. (2016). Seismic earth pressures on retaining structures and basement walls in cohesionless soils. Journal of Geotechnical and Geoenvironmental Engineering 142(10), 04016047.
Naeim, F., Tileylioglu, S., Alimoradi, A. and Stewart, J.P. (2008). Impact of foundation modeling on the accuracy of response history analysis of a tall building. Seminar on Utilization of Strong Motion Data, SMIP2008, 19–55.
NCh433 (2009). Diseño sísmico de edificios. Instituto Nacional de Normalización INN, Santiago, Chile.
Ortigosa, P., Musante, H. y Kort, I. (1982). Propiedades mecánicas de la grava de Santiago. Primer Congreso Chileno de Ingeniería Geotécnica, 442–454.
Ostadan, F. (2005). Seismic soil pressure for building walls: An updated approach. Soil Dynamics and Earthquake Engineering 25(7-10), 785-793.
PEER (2017). Guidelines for performance-based seismic design of tall buildings. Version 2.03. PEER Report 2017/06, Tall Building Initiative TBI, Pacific Earthquake Engineering Research Center, Berkeley, USA.
Pitilakis, D., Dietz, M., Wood, D.M., Clouteau, D. and Modaressi, A. (2008). Numerical simulation of dynamic soil– structure interaction in shaking table testing. Soil Dynamics and Earthquake Engineering 28(6), 453-467.
Poulos, H.G. (2017). Tall building foundation design. CRC Press.
Reese, L.C., Cox, W.R. and Koop, F.D. (1974). Analysis of laterally loaded piles in sand. Offshore Technology Conference, OTC 2080, Dallas, USA, 95-105.
Rodríguez-Roa, F. (2000). Observed and calculated loadsettlement relationship in a sandy gravel. Canadian Geotechnical Journal 37(2), 333–342.
Sabatini, P.J., Pass, D.G. and Bachus, R.C. (1999). Geotechnical engineering circular No. 4. Ground Anchors and Anchored Systems. FHWA-IF-99-015, Washington, DC, USA.
Salas, F. (2018). Monitoring and dynamic analysis of a discontinuous pile-supported deep excavation in Santiago Gravel. MSc thesis, Pontificia Universidad Católica de Chile.
Stewart, J.P. (2000). Variations between foundation-level and free-field earthquake ground motions. Earthquake Spectra 16(2), 511–532.
Stewart, J.P. and Tileylioglu, S. (2007). Input ground motions for tall buildings with subterranean levels. The Structural Design of Tall and Special Buildings 16(5), 543-557.
Stewart, J.P., Fenves, G.L. and Seed, R.B. (1999a). Seismic soilstructure interaction in buildings. I: Analytical methods. Journal of Geotechnical and Geoenvironmental Engineering 125(1), 26–37.
Stewart, J.P., Seed, R.B. and Fenves, G.L. (1999b). Seismic soilstructure interaction in buildings. II: Empirical findings. Journal of Geotechnical and Geoenvironmental Engineering 125(1), 38–48.
Veletsos, A.S. and Meek, J.W. (1974). Dynamic behaviour of building-foundation systems. Earthquake Engineering & Structural Dynamics 3(2), 121-138.
Vrettos, C., Beskos, D.E. and Triantafyllidis, T. (2016). Seismic pressures on rigid cantilever walls retaining elastic continuously non-homogeneous soil: An exact solution. Soil Dynamics and Earthquake Engineering 82, 142-153.
Wilson, E. L. and Habibullah, A. (1997). SAP2000: integrated finite element analysis and design of structures. Computers and Structures, Berkeley, California, USA.
Wolf, J.P. (1989). Soil-structure-interaction analysis in time domain. Nuclear Engineering and Design 111(3), 381–393.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2021 Obras y Proyectos

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.


