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Los terremotos, como fenómeno natural y sus consecuencias 
en estructuras han sido abordados desde perspectivas 
deterministas, pseudo-empíricas y desde un punto de vista 
probabilístico-estadístico primario. En este último enfoque, 
el adjetivo ‘primario’ significa que la aleatoriedad ha sido 
introducida en forma artificial en las variables de investigación 
relevantes en Ingeniería Sísmica. Una perspectiva alternativa 
ha sido planteada por investigadores que han clasificado 
los terremotos, desde un punto de vista ontológico, como 
fenómenos caóticos. Sus argumentos se fundamentan en el 
alto grado de no-linealidad y complejidad de las ecuaciones 
que gobiernan la ecuación de las ondas sísmicas. Sin 
embargo, la sensibilidad de la respuesta dinámica en el largo 
plazo debido a pequeñas variaciones en las condiciones 
iniciales, conocido como el Paradigma del Caos, aparece 
como un subproducto de una mirada más profunda dentro de 
fenómenos naturales en general, llamada Teoría de Sistemas 
Dinámicos Abiertos ODS. Un sistema abierto se define 
como la relación entre una parte de la naturaleza, el sistema 
primario que contiene nuestras observaciones, y el sistema 
que lo contiene. Los principios de ODS han sido aplicados a 
distintas disciplinas científicas tales como la física, la química 
y la biología, con la inten-sión de identificar y controlar 
comportamientos caóticos no deseados en sistemas altamente 
no-lineales. Se postula que los terremotos y su interacción 
con estructuras constituyen un caso de un sistema abierto. 
Reconociendo que en Ingeniería Sísmica la aplicación de 
dichos conceptos no ha sido anteriormente investigada, en 
este artículo se presenta una discusión sobre su posible uso 

Earthquakes, as a natural phenomenon and their 
consequences upon structures, have been addressed 
from deterministic, pseudo-empirical and primary 
statistical-probabilistic points of view. In the latter 
approach, ‘primary’ is meant to suggest that ran-
domness has been artificially introduced into the 
variables of investigation. An alternative view has been 
advanced by a number of researchers that have classified 
earthquakes as chaotic from an ontological perspective. 
Their arguments are founded in the high degree of non-
linearity of the equations ruling the corresponding 
seismic waves. However, the sensitivity of long time 
behavior of dynamic systems to variations in initial 
conditions, known as the Chaos Paradigm appears as a 
by-product of a deeper insight into natural phenomena 
known as Theory of Open Dynamical Systems ODS. An 
open system is currently defined as the relation between 
a part of nature, the main system which contains the 
observations we make, and its surrounding environment. 
ODS theory has been applied to different research 
subjects including physics, chemistry, and biology, for 
identifying and controlling undesired chaotic behavior 
in highly nonlinear dynamic systems. It is suggested 
that earthquakes and their interaction with structures 
constitute an example of an open system. Recognizing 
that in Earthquake Engineering the application of those 
concepts has not been previously investigated, in this 
paper a discussion related to the use of ODS concepts in 
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Introduction
Earthquakes, in relation to Structural Engineering, 
have often been addressed from a primary statistical-
probabilistic perspective. The use of ‘primary’ indicates 
that randomness has been artificially introduced within 
the variables of investigation. Alternative views have been 
advanced by a number of researchers that have classified 
earthquakes as chaotic from an ontological point of view 
(Strogatz, 1994). Their arguments are founded in the high 
degree of non-linearity and complexity of the equations 
ruling the corresponding wave dynamics. 

Nevertheless, the sensitivity of large time behavior of 
dynamical systems to variations in initial conditions, the 
Chaos Paradigm (Lorenz, 1963), appears as a by-product 
of a deeper insight on natural phenomena, named the 
Theory of Open Dynamic Systems ODS (von Bertalanffy, 
1950a,b). An open system is currently defined as the 
relation between a part of nature, the main system, inside 
which our observations are made, and its surrounding 
(unobserved) environment. Since the observed system 
and the environment are both in motion, as well as their 
exchanges of matter, energy, and information in general, 
there is a dynamic interaction. As such, an important 
consideration for the mathematical modeling of open 
systems is to determine the different time and space scales 
associated with the above collection of evolutions. In a 
classical context, the laws governing the dynamics of 

en dicha disciplina. Utilizando un modelo que representa el 
caso más básico de un oscilador de un grado de libertad con 
rigidez lineal elástica sometido sólo a un registro sísmico, se 
discuten las diferencias en la respuesta del oscilador obtenida 
usando la dinámica clásica de Newton y conceptos de ODS 
que incluyen procesos estocásticos como el que se utiliza 
en esta contribución. Conclusiones sobre las consecuencias 
de la aplicación de ODS son formuladas para re-entender 
la Ingeniería Sísmica, incorporando una crítica a enfoques 
probabilísticos primarios para abordar el mismo problema.
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that particular field is presented. Using the most basic 
case of a linear elastic single degree of freedom SDOF 
oscillator, differences in the prediction of the response 
of the system subjected to only one ground motion 
using a Newton classical approach and ODS concepts, 
which involve stochastic processes, are compared. 
Conclusions about the consequences of the application 
of ODS theory for re-understanding Earthquake 
Engineering are presented, and a general critique to 
primary probabilistic approaches for addressing the 
same problem is formulated.

Keywords: structural dynamics, seismic uncertainty, 
chaos, open dynamical systems, seismic interaction

mechanical systems are described by Newton’s equations. 
Hence, once the initial conditions are fixed, the evolution 
of states (positions and moments) is fully determined. This 
is an example of a closed or isolated system. Unfortunately, 
it is impossible to completely isolate a part of nature; 
therefore a closed system cannot exist in reality. This is 
particularly true when studying seismic phenomena. 

To the knowledge of the authors, no literature exists 
applying ODS to structural dynamics. In this paper, a 
preliminary philosophical discussion related to the use 
of these concepts in Earthquake Engineering in general 
and Structural Dynamics in particular, is presented. 
Focus is placed on discussing the uncertainty involved 
in predicting the response of structures subject to seismic 
events. An elastic and damped single degree of freedom 
SDOF system model is used, which represents a structure 
in the most simplistic way. It is shown that when applying 
stochastic perturbations, which represent the interaction of 
the open system (structure) with the environment (earth) in 
the form of a Lévy process, the dynamic response of that 
system under the same recorded ground motion exhibits 
significant variations when compared to the classical 
(unique) response, but it maintains the same order of 
magnitude. Important differences can also be appreciated 
when the proposed approach is compared to one which 
includes white noise only.
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Ods fundamentals
In order to address the problem of the interaction of the 
open observed system with the containing environment, 
one may introduce a description of this relationship through 
variations in the initial conditions, as in chaos theory, or 
via perturbations of the equations of motion by stochastic 
processes. The selection of one or the other approach is a 
question of time scales. If one assumes that the main system 
evolves faster than the environment, then the prescription 
of their interaction via the initial conditions is plausible. 
On the other hand, if both system and environment interact 
almost simultaneously with their own evolution, then the 
second approach is more appropriate. Both methods are 
included in the development of ODS theory. The concept 
of an ODS has been in use for a long time. In physics, 
the concept appeared in the work of Boltzmann during 
the second half of the 19th century, remaining implicit 
in the development of statistical mechanics. However, 
in mathematics it only became an established theory in 
the 1970’s. ODS include the so-called complex systems. 
Amongst mathematical approaches to them, the one 
based on Stochastic Processes (classical and quantum) 
is the most successful. As a result, the term Stochastic 
Analysis appears as a suitable envelope to describe a 
cross-disciplinary approach to ODS, (Fagnola et al., 1994; 
Gamble et al., 1999; Rey-Bellet, 2004; Rebolledo, 2004; 
Kossakowski and Rebolledo, 2007).

A critique of mechanistic uses of theory of 
probabilities in Earthquake Engineering
In recent years, some trends in Earthquake Engineering 
have explored the use of the theory of probabilities in the 
context of Performance-Based Earthquake Engineering 
PBEE as seen in the Vision 2000 document (SEAOC, 
1995). In this context, probabilistic methods have been used 
for describing intensity measures IM, engineering demand 
parameters EDP, damage measures DM and decision 
variables DV in order to estimate a certain probability of 
exceedance in decision making for design.

These approaches have been developed in an increasingly 
sophisticated manner such that the level of physical 
background for stating the equations governing the models 
seems to have become a paradigm. Supporting physical 
background on the application of those concepts has been 

somehow forgotten, and philosophical reflections about 
the physical meaning of the complete process appear to 
have been jeopardized.

Bolotin (1960) divided the methods of analysis in 
Earthquake Engineering into three categories: (1) 
deterministic, (2) semi-empirical and (3) based on 
probabilistic methods. He proposed a fourth way inspired 
by the lack of information cumulated to that date, and 
the impossibility of a ‘sharp’ increase in the information 
in the near future. This fourth way consisted of assuming 
that the seismic action can be described by means of 
random functions of time which depend on a set of random 
parameters. 

Most of the research done to date falls into the second and 
third categories (Anagnos and Kiremidjian, 1988; Mackie 
and Stojadinovic, 2004; Baker and Cornell, 2006; Uma et 
al., 2010). Research which deals with uncertainty can be 
found in Baker and Cornell (2008) for the estimation of 
losses due to earthquakes, and suggested the use of Monte 
Carlo simulations. In the work done by Suzuki and Minai 
(1988), SDE are implemented for describing the equation 
of motion of SDOF systems subjected to random-nature 
ground motions like that presented later by Ditlevsen 
and Bognár (1993) for elasto-plastic SDOF oscillators. 
The last approaches somehow fit the fourth category of 
Bolotin (1960). However, none of them has considered the 
interaction of the system under study with the containing 
environment, which is an open system dynamics problem.

State of the current practice
More recent trends in Earthquake Engineering have resulted 
in design codes which include probabilistic approaches in 
terms of factors for amplifying the amplitude of the design 
spectrum. This is the case of the ‘return period factor’ 
R in the New Zealand Standard NZS1107.5 (Standards 
New Zealand, 2004). According to the NZS1107.0:2002 
(Standards New Zealand, 2002), R = 1 corresponds to an 
earthquake whose intensity has an annual probability of 
exceedence of 1/500 in 50 years of expected life, (ULS 
for Importance Level 2 buildings). The R factor then is 
increased for lesser probabilities of exceedance, imposing 
a larger spectral demand. For ‘very rare’ earthquakes a 
factor R = 1.8 is required and associated with a probability 
of exceedance of 1/2500 in 50 years.
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There are some philosophical problems with the latter 
approach. There is an ad-hoc assumption of randomness 
in the earthquake phenomenon which results in an ad-hoc 
use of randomness in engineering demand parameters. 
Additionally, deviations in the frequency content which 
characterizes the design spectrum of a site, defined by 
parameters like the corner period Tc of the displacement 
spectrum (Priestley et al., 2007). It is worth noting that 
in Priestley et al. (2007), it is stated that the estimation 
of the parameter Tc is based on the statistics of different 
earthquakes which have occurred previously (semi-
empirical). 

The duration of the ground motion is not accounted for in 
modal spectral analysis, equivalent lateral force methods 
as well as nonlinear static methods (pushover), but it is 
accounted for in dynamic analysis methods (elastic or 
inelastic), where ground motion records are used. The 
relevance of the duration of the motion in a linear elastic 
dynamic analysis seems not to be as large as it can be in 
an inelastic analysis, the reason being that the mechanical 
properties of the structure vary during a nonlinear analysis, 
leading to completely different responses of a given 
structure when compared to the elastic counterpart model 
(Quintana-Gallo, 2008). Nevertheless, it is important to 
remember that a nonlinear numerical analysis can only be 
carried out after the design of the structure is ready. This 
method, in the context of displacement-based seismic 
design has been suggested for verification only. Therefore 
in current design only a snap-shot of the structure at a 
given limit state in terms of displacements (or forces) is 
being considered in the facts.

The estimation of the seismic intensity seems to have some 
philosophical issues. It is understood that the specification 
and the use of a certain way of representing a rational 
indicator of the seismic demand used for designing a 
structure is needed. It is recognized that the background 
for defining such an indicator is typically based on genuine 
information obtained during past earthquakes and based 
on considerations of the classical theory of dynamics 
of structures (Chopra, 2001). It is also recognized that 
efforts have been done in order to relate those indicators 
(numbers) to the damage observed during earthquakes 
where the data for developing that indicator has been 
obtained. However, no matter how much information can 

be gathered throughout the history in order to improve the 
accuracy of that indicator, there is always the possibility 
of that indicator to be refuted on the unsafe side. Assume 
that the indicator is correct: as the damage suffered by 
structures during two subsequent seismic events normally 
differ from one to the other, it follows that the a priori 
establishment of an expected damage is not possible. 
A posteriori, the damage can be evaluated; the demand 
parameters compared with the previous estimations, and 
start another trial and error process, which is nothing more 
than the conjectures and refutations method for science 
proposed by Karl Popper (1963). The important part is to 
acknowledge the fact that to err is to succeed.

Ground motion recordings from historical earthquakes 
and spectral response
Ground motions due to earthquakes have been recorded 
since a relatively ‘short time’ in the human civilization 
time-scale, which is a ‘very short time’ in geological time-
scale. Ground motion records of strong earthquakes are 
reported in the literature since the 1940’s (Housner, 1947). 
The spectral response of those records and some that may 
have occurred in between, are reported in Housner et al. 
(1953), even though the concept of response spectra was 
introduced before by Biot (1943). From there onward, 
the exponential increasing in the technology has allowed 
seismic records to be obtained in many more locations and 
with better precision. 

Derivations for a ‘mean’ or ‘reasonably accurate’ 
characteristic spectrum for a given location have been 
done for a long time, sometimes in a highly sophisticated 
fashion. Relatively recent attempts for considering the 
factual uncertainty in the spectral response to be used at 
a certain site, have used the theory of probabilities for 
addressing the problem, based on statistical inference 
(Baker and Cornell, 2006). In the following sections, one 
arbitrarily selected ground motion recorded during the 
Loma Prieta earthquake in Gilroy Array#5 station is used. 
As will be discussed later, the choice of a certain record 
may be almost irrelevant.

Equation of motion of a closed sdof system under 
ground motion excitations
The equation of motion for a damped single degree of 
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freedom SDOF mass with elastic restoring (stiffness) and 
viscous damping (dissipating) forces, with applications 
for structural earthquake engineering is well known. The 
body of mass m representing the system’s inertial mass 
is connected to the containing system (environment) by 
means of a spring of stiffness k and a viscous damper with 
equivalent damping ratio d. This is illustrated in Figure 1.

Figure 1: Single degree of freedom system with viscous dam-
ping subjected to earthquake ground accelerations

The equation which describes the motion of that system 
(response) under ground motion acceleration is given by 
equation (1), which can be re-written as equation (2).

where m is the inertial mass; c is the viscous damping; k 
is the stiffness; ag(t) is the ground acceleration; d is the 
critical damping; and un is the system natural frequency 
of vibration. The term q(t) denotes the system response 
in terms of position and its derivatives with respect to 
time are denoted by dots (system velocity and relative 
acceleration using single and double dots, respectively). 
The above classical equations may be synthesized as a first 
order system by introducing the vector variable

where p(t) = mdq(t)/dt denotes the momentum function, 

and q0, v0, and p0 are the initial conditions of position, 
velocity and momentum, respectively. Re-writing equation 
(1) in terms of x(t), it becomes equation (3).

where,

	

Equation of motion of the sdof system from 
an open dynamical systems perspective
In Structural Dynamics the basic equation of motion of a 
SDOF system has been stated from Newton’s mechanics. 
In this section, the problem is addressed from a different 
perspective which includes the interaction of the system 
with the surrounding environment. This interaction 
corresponds to an exchange of energy or momentum in this 
particular case.

The space of trajectories
Interactions with the environment may produce important 
variations on the whole trajectory of the system ruled by (3). 
In order to construct the appropriate mathematical model, 
we need to consider the set Ω of all possible solutions of 
(3) denoted by ω: [0;∞[ → |R2. Therefore, each element ω 
Є Ω is a function of time, and for each t ≥ 0, ω(t) is a vector 
in |R2 such that:

Let us define the function Xt: Ω → |R2, which corresponds 
to the state of the system, when following the trajectory ω. 
We also define Qt: Ω → R, and Pt: Ω → R as the functions 
of the position and momentum, respectively, so that Xt 
= [Qt, Pt]

T. A trajectory ω Є Ω corresponds to a possible 
solution of (3) if it satisfies (4) for all t ≥ 0. Equation (4) 
corresponds to the integrated form of the solution, which can 
also be expressed in the differential form of equation (5).
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This formulation is still limited to a closed system. In the 
next section the mathematical formulation as well as the 
physical background for describing the interaction of an 
open system with the containing environment is explained.

Opening the System
Let us now choose our basic space of trajectories Ω to 
allow for discontinuities, which enables the possibility of 
the system to experience impulses or sudden variations 
in the momentum. Assume that at a given time t = t0 our 
system (or particle) collides with a number of small objects 
or particles. These collisions introduce instantaneous 
modifications on the momentum (force). Mathematically 
that variation on the momentum is given by a jump in the 
function of the momentum at time t0, such that: ΔPt0(ω) = 
Pt0(ω) - Pt0-(ω). From a physical point of view, we have 
changed our system so that we no longer have a single 
particle (body) but a two-particle (body) system. 

In the new system the jump in the momentum of the 
first body is (-1) times the jump in the momentum of the 
second body, following the principle of conservation in the 
momentum. Assume that the magnitude of the jump in the 
momentum of the colliding body is γ > 0. Name ζ(ω) its 
sign, such that ζ(ω) = 1 if the main body is pushed forward, 
and ζ(ω) = -1 if it is pushed backwards in this simple one-
dimensional example. The jump in the momentum at t = t0 
in terms of the function defined previously is:

where ΔVt0 (ω) is the jump in the momentum occurring 
at a certain time t0, normalized by the magnitude. The 
continuous form of the function Vt (ω) is given by Vt (ω) 
= ζ (ω)1[t0, ∞[, where 1[t0, ∞[ is the Heaviside function at t0, 
which takes a value of 1 from t = t0 to infinity. The function 
t → Vt (ω) has finite variations on bounded intervals of the 
real line. Integration of a right-continuous function f, with 
respect to V is understood as:

which allows one to use the short-hand writing dF = f(t)
dV(t). Therefore, the equation of motion of the SDOF 

system can be written as equation (6), with the initial 
conditions given by equation (7):

where σ = [0; c]T is the magnitude of the state perturbation 
in terms of an |R2 vector similar to b(t), the ground motion 
excitation vector.

Let us now introduce the time sequence (Tn)nЄ|N such that 
Tn = nh and h Є |R+ is the series time-step. Assume that the 
sequence of impulses takes place at times T1

h < T2
h < … < 

Tn
h <… < TN

h. Then the process Vt becomes:

where the sequence (ζn(ω))nЄ|N has values in {-1, 1} for 
all n. Assume that the masses of the colliding particles 
(or bodies) are all identical, as well as their momentum γ, 
which is the classical assumption for Brownian motion. The 
dissipated energy during the collisions E is proportional to 
the square of the momentum, such that in this case:

In order to keep the dissipated energy finite as h → 0, we 
need to select γ proportional to √h, that is γ = c√h, where 
c is a constant. We now re-write (6) as equation (8) for the 
functional Xt

h(ω) where the superscript h has been added 
for recalling the relevance of this parameter. 

Now we are faced with the following problem: on one hand 
the dissipative energy is c2h[t/h], which is kept finite and 
tends to c2t in the limit when h → 0, but on the other hand 
there are currently no tools to prove that Xt

h(ω) converges. 
In order to cope with this problem it is necessary to modify 
the mathematical framework of the study by introducing 
probabilities via stochastic processes.
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Application of probabilistic concepts and stochastic 
processes – classical white noise
In order to solve the limit problem stated in the previous 
sections, consider a probability measure |P on the space Ω 
for which the sequence (ζn(ω))nЄ|N satisfies the following 
conditions:

•	 ζn is |P-independent of ζm for all m, n;
•	 |P(ζn = ±1) = ½ for all n.

Under this hypotheses we obtain the characteristic function, 
or Fourier transform of Wt

h = √h·Vt
h, given by:

In the limit when h → 0, the last expression takes the form of

In Classical Probability Theory, the result stated above is 
known as the Central Limit Theorem for random variables 
of the form of Wt

h. The implication is that these variables 
converge in distribution towards a Gaussian (normal) 
random variable with zero mean and variance t. That result 
can be improved to prove that the family of processes Wh 
converges towards a Brownian motion (or Wiener noise), 
denoted as (Wt, t ≥ 0). It can also be proved that a limit 
equation of the form of equation (9) exists, which is a 
prototype of a stochastic differential equation (Rebolledo, 
1979, 1980; Platen and Rebolledo, 1985).

In equation (9), c corresponds to the so called diffusion 
coefficient. This kind of equation is suitable for representing 
interactions due to small impulses occurring very often. 
During a seismic event there will certainly be interactions 
of this kind between the structure and the ground (earth) 
during non-destructive earthquakes. 

Nevertheless, the greatest damage are the result of (to date) 
unpredictable earthquakes, which liberate a huge amount 
of energy. These events are geologically comparable to 

those unpredictable major events related to non-periodic 
large eruptions in volcanoes, such as the Ruapehu volcano 
in New Zealand (Gamble et al., 1999), a phenomenon 
which was explained using the theory of ODS. 

Inspired by those findings, we select a more suitable kind 
of stochastic perturbation for implementation in structural 
dynamics. This is a Lévy process, which contains a 
Brownian motion portion as well as a discontinuous ‘jump’ 
process, understood to be more representative of the 
incidence of a major earthquake during the strong motion 
part of it. We consider the addition of a Poisson process to 
equation (9), as described in the next section.

Proposed Lévy process
Assume that during the strong part of the ground motion 
additional interactions in terms of variations in the 
momentum as well as the position due to the interaction 
with the environment are both distributed according to 
a Poisson process with parameter λ. This is the series of 
occurrence times that are given by (τn)nЄ|N such that these 
times are independent and exponentially distributed 
with parameter λ, such that their mean is 1/λ. In order to 
estimate this parameter one can take the mean value of 
the time interval between the times where these additional 
perturbations take place during the strong part of the 
ground motion. 

Let us introduce the process Nt which counts the additional 
impulses: Nt (ω) = n if and only if τn (ω) ≤ t ≤ τn+1 (ω). 
We now define the magnitude of the interaction of n-th 
quake as Zn(ω) = [Zn

q(ω); Zn
p(ω)]T, where Zn

q (ω) and Zn
p 

(ω) are the position and momentum components of the 
additional impulse magnitude vector Zn(ω), respectively. 
If the sequences (Zn

q)nЄ|N and (Zn
p)nЄ|N are both independent 

(for the scope of this paper) and identically distributed 
(according to a certain probability distribution) and we 
further assume that these magnitudes are independent of 
Nt, then the process defined in equation (10) is a Lévy 
process. 



80

Quintana-Gallo, P.,  Rebolledo, R.  and Allan, G.  (2013). Dealing with uncertainty in Earthquake 
Engineering: a discussion on the application of the Theory of Open Dynamical Systems.
Obras y Proyectos 14, 73-84	

Adding the new set of interactions Lt(ω) into (9), we obtain 
equation (11), which represents a richer model for the open 
system dynamics, and it has a direct solution with the application 
of the Theorem 6.3.3 presented in Applebaum (2009).

A suitable numerical method for solving (11) is the Euler-
Maruyana method (Kloeden and Platen, 1992), which can 
be simplified to solve (3).

Numerical simulation of the sdof system 
response using both approaches
In the following section, numerical simulations of the 
SDOF system response under study within the context of 
a classical and an open system dynamics approaches are 
presented. Only one seismic record was used, in light of 
the extremely unlikely event that the same ground motion 
occurs again in a future earthquake, and consequently the 
corresponding spectral response (Housner et al., 1953; 
Goodman et al., 1954; Bolotin, 1960).

Numerical solution of the equations of motion 
For a given discretization of time t0 = T0 < T1 < … < Tn 
= TN of the time interval [t0; TN] and time interval Δt = 
h, an Euler-Maruyana approximation of equation (11) is a 
continuous time stochastic process Y = {Y(t), t0 ≤ t ≤ TN} 
which satisfies equation (12), for n = 0 to N – 1.

Assume the natural period of vibration of the oscillator is 
1 s, the inertial mass m = 1, and a critical damping d = 
5%. Under these conditions, k = 4π2, and c = π/5, which 
determines the matrix M. Initial conditions of the process 
are set to zero such that Y0 (ω) = X0 = x (t = 0) = x0.

In order to define the vector b(t), the ground motion 
shown in Figure 2 was used, recorded at Gilroy Array #5 
station, during the Loma Prieta earthquake (CA 1989). The 
amplitude of the original record was scaled to a PGA = 1g, 
and the shape ‘adjusted’ to fit the New Zealand Standard 
(Quintana-Gallo et al., 2011). The earthquake ground 

motion is determined for all tn = 0, h, 2h… Ŧ, where Ŧ 
corresponds to its duration, such that Ŧ ≤ TN, allowing for a 
free vibration at the end of the response.

Figure 2: Ground motion acceleration input recorded at Gilroy 
array #5 station during Loma Prieta Earthquake, CA 1989

The response of the SDOF system in the context of classical 
dynamics is shown in Figure 3. The response is given in 
terms of displacements since they have been recognized 
to be one of the most important parameters in seismic 
design (Priestley, 1998, 2003; Priestley et al., 2007) and 
also in terms of the phase state vector in time, described 
in the position – momentum domain. This response is 
unique from a mathematical perspective in the context of 
Newton’s classical mechanics.

Open system responses with Brownian motion interac-
tion (Wiener process)
The solution of the equation of motion of the system given 
in equation (12) includes a Brownian motion stochastic 
process only. This process also known as the Wiener 
process, was truncated at a time Ŧ1 = 35 s, when the ground 
motions approaches to rather small accelerations. From 
the infinity of responses that can be generated, two were 
selected and are presented in Figure 4. The coefficient of 
diffusion for Brownian motion is taken as c = 1.

In the graphs of Figure 4 it can be observed that, (1) the 
responses are all different from the classical counterpart, 
(2) they are all different from each other, (3) the shape 
remains similar and under certain limits, (4) the peak 
response is reached at approximately the same time in all 
cases, with fairly similar values. As will be show next, this 
is not the case when adding a complete Lévy process.
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Figure 3: Numerical simulation of the response of the SDOF in 
a classical structural dynamics context

Open system response with the proposed 
Lévy process interaction
In this section, the equation of motion with the complete 
Lévy process (Applebaum, 2004, 2009) was implemented. 
As this interaction is associated to that occurring during 
intense parts of the ground motion, when the exchange of 
energy is greater, they were associated to the strong motion 
part of the input motion only. This is in this case from 4.5 
to 26 s as can be seen in Figure 2. Note that intensity in 
this case necessarily requires the existence of the system 
withstanding the actions imposed by seismic waves in 

dynamical interaction with the system, as was remarked at 
the beginning of this article.

For the scope of this paper, which deals with a primitive 
formulation of ODS concepts applied to Structural 
Dynamics, the main parameters have been set to arbitrary 
numbers, but keeping in mind the order of magnitude of 
those assumptions. In future contributions, parametric 
analysis of these parameters in order to evaluate their 
influence on the response of the open system, and empirical 
data is used for estimating the parameters in accordance 
with physics considerations. 

Figure 4: System response with additional Brownian motion 
only
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In this first approximation, the Poisson parameter was set 
to λ = 3, the magnitude of the displacement part of the 
magnitude was assumed to be represented by a normal 
distribution with mean value Zn

q = 0.01 m and a standard 
deviation of 0.05 m (with the sign calculated as done for 
the Brownian motion), and the momentum part Zn

p set to a 
Brownian component with coefficient c = 1 (see previous 
section). 

Figure 5: System response when using a Lévy process

In Figure 5, two of the infinite responses which represent 
a solution of equation (10) for the selected ground motion 
are presented. It can be observed that in this case: (1) 
the responses can differ significantly in shape from that 
predicted with only the classical and Brownian motion 

approaches, (2) the predicted amplitude of the response 
can be larger and smaller than those predicted using the 
other two approaches, (3) two system’s responses under 
the same process can differ significantly in shape and 
magnitude between each other.

The two responses presented in Figure 5 seem to be 
associated in nature to a large extent to the unpredictable, 
but delimited inside some limits at the same time. The latter 
can be understood in common terms as chaotic behavior. 
In this case, the chaotic behavior is a consequence of the 
interaction of the observed system with the containing 
environment, which must be accounted for in ODS.

Re-understanding Earthquake 
Engineering from an ODS perspective
We can understand Earthquake Engineering as the 
discipline which deals with the design of structures to 
withstand earthquakes of an uncertain nature safely. This 
requires the understanding of (at a minimum) Structural 
Dynamics and Seismology. Seismology is the discipline of 
Geological Sciences which deals with tectonic processes 
and earthquakes, and is expected to provide information 
about the seismic hazard at a given location. 

Hazard analysis has been largely studied in the past and 
is still a matter of great discussion. Most of the time it 
is implicitly assumed that the most suitable records for 
a certain region correspond to those recorded previously 
on the same site. The intensity of these records is related 
normally to PGA or maximum Sa indicators, which are 
based on mean values recorded in the past. The latter can 
be described as a mix of Bolotin’s (1960) second and third 
categories: semi-empirical and probabilistic, if conditional 
probabilities are being used.

Nevertheless, new earthquake events like those that 
occurred in Chile (27 February 2010) and New Zealand 
(22 February 2011) keep refuting our expectations 
based on what was recorded and observed before in the 
same place in terms of recorded ground motions and 
consequences (intensity) (Quintana-Gallo et al., 2013a,b). 
We re-understand Earthquake Engineering by reviewing 
the Structural Dynamics behind a simple SDOF oscillator 
from an ODS perspective. We argue that there is not a 
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‘unique’ fully determined structural response of a SDOF 
subjected to a unique record, but there are many, like in 
quantum mechanics.

Conclusions
Inspired by the uncertainty involved in the structural 
engineering design process, the theory of open systems has 
been applied to Structural Engineering in a very basic way. 
The findings described in the previous sections open a new 
area of investigation in order to identify and mitigate the 
sources of uncertainty in Structural Dynamics. We believe 
that future research in this direction is plausible, in light of 
the arguments presented. 

We argue that one may not be taking into account a large 
amount of complexity and uncertainty inherent to the 
problem of structural dynamics in current design, because 
we deal with closed systems which are not necessarily 
representative of reality. Therefore the revision of 
some earthquake engineering concepts by recalling its 
fundamentals and recognizing the uncertainty involved 
in the process needs to be addressed from alternative 
approaches. It is concluded that ODS represents an 
important tool for future investigations in the field of 
Earthquake Engineering, and can provide great insight into 
the uncertainty involved in the discipline.
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