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Localised failure in geomaterials is preceded and 
accompanied by intensive deformation and irreversible 
micro-structural changes of the material in a small but 
finite size region. Shear, compaction, and dilation bands 
observed in soils and porous rocks are typical examples 
of phenomena that lead to localised failure. The width h 
of the localisation band has been experimentally shown 
to be a physical quantity related to the microstructure 
of the material. On the other hand, numerical methods 
for the solution of boundary value problems usually 
introduce another length scale H, as a result of the 
spatial discretisation of the considered domain into 
smaller ones over which the constitutive response of 
the material is defined in terms of incremental stress-
strain relationships. While h, as a physical quantity, 
is fixed, H varies with the resolution of the numerical 
discretisation. Since h scales with the material 
microstructure and therefore is usually much smaller 
than the resolution of the numerical discretisation, 
the case H > h is considered in this study, e.g. failure 
behaviour governed by a localisation band of width 
h embedded in an elastic bulk of nominal side H. We 
present a general constitutive modelling framework to 
connect these two scales, and corresponding responses 
of the materials inside and outside the localisation zone. 
We demonstrate how this approach can help obtain 
physically meaningful solutions that are independent 
of the spatial discretisation in numerical analysis. 
Numerical analyses of localised failure in quasi-brittle 
materials are used to further highlight the features and 
applicability of the proposed approach.

Keywords: length scales, constitutive modelling, 
localised failure, discontinuity, bifurcation, damage, 
fracture energy

Fallas localizadas en geomateriales están precedidas y 
se dan en conjunto con deformaciones intensas y cambios 
micro estructurales irreversibles del material en una región 
de tamaño finito, pero pequeña. Corte, compactación y 
bandas de dilatación observables en suelos y rocas porosas 
son ejemplos típicos de fenómenos que conducen a fallas 
localizadas. Ha sido experimentalmente demostrado que el 
ancho h de la banda de localización es una cantidad física 
relacionada con la micro estructura del material. Por otro 
lado, métodos numéricos para la resolución de problemas de 
valor en la frontera usualmente introducen otra longitud de 
escala H como un resultado de la discretización espacial del 
dominio considerado en partes más pequeñas sobre el cual la 
respuesta constitutiva del material está definida en términos 
de relaciones incrementales de tensión-deformación. 
Mientras h como cantidad física está fija, H varía con 
la resolución de la discretización numérica. Dado que h 
escala con la micro estructura del material y por lo tanto 
es usualmente mucho más pequeño que la resolución de la 
discretización numérica, el caso H > h es considerado en este 
estudio, por ejemplo el comportamiento en falla gobernado 
por una banda de localización de ancho h inserta en una 
masa elástica de lado nominal H. Se presenta un marco de 
modelamiento constitutivo general para conectar estas dos 
escalas, y las respuestas correspondientes del material dentro 
y fuera de la zona de localización. Se demuestra como esta 
estrategia puede ayudar a obtener soluciones con significado 
físico que son independientes de la discretización espacial en 
análisis numéricos. Análisis numéricos de falla localizada en 
materiales cuasi frágiles son además usados para destacar 
las características y aplicabilidad de la estrategia propuesta.

Palabras clave: escalas de longitud, modelo constitutivo, 
falla localizada, discontinuidad, bifurcación, daño, energía 
de fracturación  
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Introduction 
Failure of geomaterials such as the formation of sea ice 
leads in the Arctic (Jirasek and Bazant, 1995; Sulsky et al., 
2007), rock fracture in underground mining, etc., usually 
involves the material behaviour at various scales and stages 
of deformation. In particular, inelastic deformation and 
fracture localise in narrow zones, while the surrounding 
bulk, usually of several orders of magnitude larger in extent, 
is unloading elastically. Numerical modelling of such large 
scale failure processes (dimensions of several kilometres) 
is computationally challenging, as the behaviour of the 
material inside and outside the localisation zone should be 
incorporated in a numerical model. In this regard, classical 
continuum models usually lack a length scale to correctly 
capture the localised failure of softening materials. While 
enrichment of such models with an internal length through 
the use of nonlocal/gradient regularisation (Pijaudier-
Cabot and Bazant, 1987; Chen and Schreyer, 1987) is a 
mathematically and probably physically rigorous way, the 
application of such enhancements is severely restricted 
by the available computational resources. This is because 
the locations of the failure zones are generally unknown 
and the considered domain can be of several orders of 
magnitude bigger than the characteristic width h of the 
localisation zone, resulting in a very high resolution of the 
discretisation, and consequently very large model size. 

In the literature, fracture energy regularisation based on 
the smeared crack concept (Cedolin and Bazant, 1980) is 
probably the simplest way to cope with softening-related 
issues in the failure analysis of solids/structures. However, 
this suffers from the drawback that the constitutive 
behaviour must be unphysically scaled with the resolution 
of the discretisation to meet the requirement on the energy 
dissipation. In addition, once a coarse spatial discretisation 
is used (e.g. in large scale analysis), the specific fracture 
energy obtained from the (surface) fracture energy and the 
resolution of the discretisation (see equation (8) below) 
becomes smaller than the elastic strain energy at peak 
(Jirasek and Bazant, 1995), resulting in the inadmissible 
snapback instability in the constitutive response. Other 
enhancements to the discretisation scheme include 
Enhanced Assumed Strain EAS (e.g. Larsson et al., 1996; 
Oliver, 1996; Borja, 2000; Foster et al., 2007) and XFEM, 
the eXtended Finite Element Methods (e.g. Wells and 

Sluys, 2001; Samaniego and Belytschko, 2005; Sanborn 
and Prévost, 2011). These more sophisticated methods 
have been extensively used to address failure modelling 
at large scales, e.g. H > h, and usually idealise the finite 
width localisation zone as a zero thickness surface 
across which the displacement field is discontinuous (the 
strong discontinuity case). We are also aware of earlier 
works on weak discontinuity (e.g. only the strain field is 
discontinuous) using the localisation zone embedded in 
finite elements (e.g. Belytschko et al., 1988; Sluys and 
Berends, 1998; and Garikipati and Hughes, 2000). The 
key idea of these approaches is to enhance the deformation 
mode of the special finite element so that both inelastic 
behaviour in the localisation zone and the elastic shrinking 
of the bulk continuum can be adequately accounted for. As 
a consequence, all such approaches involve finite element 
re-formulations, e.g. modification and/or introduction of 
shape functions, and hence result in the dependence of the 
approach on the type of finite element used for the numerical 
discretisation. Can we come up with a methodology better 
than the smeared crack approach, but less complex than 
the EAS or XFEM?

The key idea described in the present paper is to enhance 
the constitutive behaviour description, rather than the 
finite element formulation, with a length scale related 
to the width of the localisation zone used for large scale 
analysis of failure, e.g. h < H. We address the nature of the 
localised failure from the constitutive modelling point of 
view without having to resort to variational formulations 
for the discretisation using the finite element method. The 
interface with any spatial discretisation scheme is taken into 
account only through the size h of the sub-domain (Figure 
1), while connection with any kind of constitutive behaviour 
is specified through its tangent stiffness. The proposed 
approach is therefore straightforwardly applicable to any 
material model and any spatial discretisation scheme.

Figure 1: Localisation zone (shaded) embedded in a volume 
(Nguyen et al., 2012)
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Constitutive modelling framework
We aim to develop at first a general framework that can fit 
any constitutive model. The starting point is the localisation 
zone of size h embedded in a volume of nominal size H, 
introduced in relation to the Fracture Process Zone FPZ 
observed in the failure of quasi-brittle materials, or the shear 
band in soils. This is the stage beyond the homogeneous 
deformation of the material (Figure 1), e.g. at the onset 
or after the bifurcation of the material behaviour (Borja, 
2000). It is assumed in this framework that, during further 
deformation, the material undergoes elastic unloading in 
the region outside the localisation zone. While h is related 
to the inelastic behaviour and failure at the lower scale, 
the size H of the elastic bulk is merely a numerical feature 
resulting from the discretisation of the domain under 
consideration. Grid spacing in the finite difference method 
and the domain size ascribed to an integration point in the 
finite element method are typical examples of the meaning 
we attach to the discretisation characteristic size H. As 
a consequence, H can vary depending on the required 
resolution of the numerical discretisation, while h can be 
considered a material property and hence is invariant with 
the numerical discretisation. We view the configuration at 
failure in Figure 1 as a composite material consisting of 
two phases: an inelastic localisation zone embedded in an 
elastic bulk. For this, the linear scaling of the total strain 
rate applies:

where f = h/H is the volume fraction of the embedded 
localisation zone in Ω and subscripts “i” and “o” are used 
to denote quantities belonging to the behaviour inside 
and outside the localisation zone, respectively (Figure 1). 
Across the boundary of the localisation zone, the internal 
equilibrium in terms of traction continuity must be met, 
enforcing coupling between the inelastic localisation zone 
and outside elastic bulk. In other words, the elastic bulk 
is enhanced by the inelastic behaviour of the localisation 
zone (Nguyen et al., 2012). Denoting n the normal vector, 
[ů] the relative velocity between opposite sides of the 
localisation band, and adopting the following form for the 
strain rate  inside the localisation band (Vardoulakis et al., 
1978; Kolymbas, 2009; neglecting the small homogeneous 
term in ):

the relaxation strain rate  of the elastic bulk is:

For elastic unloading of the bulk material with stiffness 
modulus ao, the stress rate  of the continuum model is 
(Nguyen et al., 2012):

Inside the localisation zone, the constitutive relationship 
rate is assumed of the general form:

where ai is the tangent stiffness. The above two equations 
are linked through the internal equilibrium dictating 
the continuity of traction across the boundary of the 
localisation zone:

The distinction from a regular constitutive model lies 
in the coupled equations (4-6). From (4), in order to 
obtain the stress rate  from a given strain rate , the 
constitutive equation (5) dictating the inelastic response of 
the localisation band, together with the internal equilibrium 
equation (6), are needed. The volume fraction f and the 
inelastic response inside the localisation zone contribute to 
the relaxation of the stress rate in the elastic bulk. Equations 
(4-5) can be worked out to result in the following form of 
stress-strain relationship (Nguyen et al., 2012):

where  is a tensor obtained 
from the sizes and acoustic tensors of the behaviours 
inside and outside the localisation band. As can be seen, 
the overall constitutive behaviour in this case takes into 
account both the responses and sizes of inelastic and elastic 



36

Nguyen, G. (2014). An enriched constitutive modelling framework for localised failure of 
geomaterials. Obras y Proyectos 15, 33-39	

zones, in addition to the anisotropy introduced by the 
localisation. Size effects are therefore explicitly integrated 
in the constitutive behaviour.

What are the new features?
The above approach can be viewed as a two-stage smearing 
process. The velocity jump  between the two sides of the 
localisation band is at first smeared over the localisation 
band with physical size h (equation (2)). Therefore the 
integration of inelastic constitutive behaviour for stress 
and internal variables in the localisation zone is only 
related to this physical size and are invariant with respect 
to the discretisation size H. To obtain the relaxation strain 
rate and then stress rate of the elastic bulk, a compatibility 
argument (equation (3)) is utilised, effectively consisting 
of further smearing of the velocity jump  over the 
discretisation size H. The difference with the traditional 
smeared crack approach is obvious: in the latter, everything 
is smeared over the discretisation size H, meaning that 
the constitutive response must vary with the resolution of 
the discretisation to maintain the same amount of energy 
dissipation. As a consequence, very big H required in large 
scale modelling due to limited computing resource leads to 
unphysical scaling of model parameters which may still be 
unable to prevent snapback in the constitutive behaviour 
(e.g. Jirasek and Bazant, 1995; Sulsky et al., 2007). 

The current approach, in contrast, gives a direct access to 
additional degrees of freedom related to the strain within 
the localisation band of size h, in which the constitutive law 
is physical and hence does not snap back. Numerically, this 
means that the stress return algorithms for rate constitutive 
equations can always be performed.

We illustrate the above points using a simple constitutive 
model in 1D setting (Figure 2). This is a softening 
behaviour observed in failure of quasibrittle materials like 
rocks or concrete in which the pre- and post-peak responses 
are represented by the slopes ao and ai of the stress-strain 
curve. The material is homogeneous up to the peak point, 
after which the response bifurcates into two branches with 
slopes ai and ao corresponding to the inelastic behaviour 
inside the Fracture Process Zone FPZ of size h and elastic 
behaviour in the outside bulk of size H-h (Figure 2). 

Figure 2: 1D constitutive behaviour and corresponding sizes

The relationship between the FPZ size h, specific 
dissipation g, as the area under the stress-strain curve, 
and fracture energy G, as the energy released due to the 
creation of new surface area can be written as:

The internal equilibrium in this 1D case reads:  
while the strain rate inside the FPZ takes the simple form 

. From equations (4-6) we can write:

This results in the strain rate  inside the localisation zone 
in terms of the total strain rate , as:

Using (4), we can then write the stress rate  in terms of 
strain rate , as:

In the context of quasibrittle failure, the fracture energy 
G (equation (8)) is a material constant representing the 
contributions from the release of surface energy due 
to micro-cracking in the FPZ of size h. Therefore the 
inelastic behaviour in the localisation zone characterised 
by the softening modulus ai (Figure 2) is dependent on G 
and the size h of the FPZ, as intrinsic material parameters. 
Expressing everything in terms of G and h, we obtain:
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The stress rate in (13) is exactly that obtained from a 
smeared crack approach, e.g. smearing G over the size H 
of the finite element. Snapback in the overall response, e.g. 

, is present if H is sufficiently large to 
make the denominator positive. However, the constitutive 
response is integrable thanks to the use of an internal 
equilibrium equation (6), together with the enrichment 
stress σi and strain εi . Regardless of the discretisation size 
H, the strain rate  of the response inside the FPZ is always 
a positive quantity representing the separation of the 
material. Therefore beyond the elastic regime, a negative 
value of  , due to snapback in the overall response, 
still results in a positive strain rate  for the integration 
of inelastic incremental constitutive equations. In the 
context of numerical failure analysis, εi is monotonically 
increasing with failure progression and it can be used as 
a control parameter in any indirect displacement control 
solution schemes (e.g. the local arc-length control by May 
and Duan (1997) and Yang and Proverbs, (2004)). 

Physically, snapback in a structural sense (e.g. finite element 
response) is a consequence of insufficient resolution of the 
discretisation in large scale failure analysis that, according 
to the literature, usually requires the enhancement of 
deformation mode of finite elements, e.g. using EAS 
or XFEM type enrichments. The proposed framework 
is another kind of enhancement, relying solely on the 
constitutive behaviour at integration point level with the 
use of the enrichment stress σi and strain εi . The advantage 
over traditional smeared crack is obvious, while the 
simplicity and practicality advantages over sophisticated 
enrichment methods like EAS or XFEM can also be seen. 
We will further illustrate this point in a forthcoming paper.

Numerical examples
The first numerical example shows the response of a bar of 
length H, with unit cross sectional area and an embedded 
FPZ of size h (see Figure 2). Only the constitutive response 
is concerned in this example, which is equivalent to the 
behaviour of a single linear 1D finite element of length H. 
The fracture energy is taken as 15 times the elastic strain 
energy at peak. Figure 3b shows the effects of varying the 

bar length H on the overall response, while keeping h fixed. 
It can be seen that regardless of the response, the area under 
the stress-displacement curve remains unchanged and is 
always equal to the dissipation in the FPZ (see equation 
(8)). The stress strain response inside the FPZ (Figure 3a) 
is invariant with the size H, while that is not the case with 
smeared crack approach (Figure 3c) due to the fact that 
everything is smeared over the bar length H. In short, the 
single stress component in the smeared crack approach 
requires the variation of the constitutive behaviour with 
respect to the discretisation to meet the requirement on 
the dissipation. The stress-strain behaviour in such cases 
just reflects the overall stress-displacement response, e.g. 
essentially strain is obtained by smearing the displacement 
over the length H. The coupled stresses in the proposed 
constitutive modelling framework allow us to keep a 
meaningful constitutive response inside the FPZ that is 
invariant with the discretisation (Figure 3a). Essentially, 
all parameters of the model remain unchanged with respect 
to the resolution of the discretisation, a property that is 
missing in traditional smeared crack approach.

Figure 3: Size effects on constitutive behaviour: a) normalised 
stress-strain response in the FPZ, b) normalised stress-normali-
sed displacement, and c) normalised stress-strain response of a 
smeared crack model

In the second example, a 10 mm long bar, clamped at one 
end and free at the other, is discretised using 2D finite 
elements under plane strain conditions. Localised failure 
is triggered off by weakening the element next to the 
clamp (tensile strength reduced by 10%). We used a linear 
softening law (see expressions (8-13)) with the following 
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properties: Young’s modulus E = 30000 MPa, Poisson’s 
ratio v = 0.2, tensile uniaxial strength S = 3 MPa, and 
fracture energy G = 0.0015 Nmm/mm2. Figure 4a shows 
that the structural response of the bar is insensitive to the 
discretisation. The evolution of the displacement profiles 
in 2 cases, coarse and fine meshes, are also depicted and 
seen to coincide above the resolution of the coarse mesh.

In the third example, a three point bending test is analysed 
using a simplified version of the constitutive model 
proposed in Nguyen and Korsunsky (2008), embedded 
in the above constitutive modelling scheme. The model 
is implemented in an in-house numerical code based on 
the Material Point Method MPM (Sulsky et al., 1995). 
Details on the implementation of the model along with 
some computational issues related to the application of the 
proposed scheme will be covered in a forthcoming paper. 
The geometrical data and material properties are taken from 
the experimental test of Petersson (1981) and illustrated in 
Figure 5. As can be seen in Figure 5, the numerical responses 
are insensitive to the resolution of the discretisation and also 
the integration scheme of the MPM. Integration schemes 
using 4 and 16 material points MPs per element result in 
almost same response. In all cases, the numerical predictions 
closely follow the experimental trends.

Figure 4: A bar under tension: a) load-displacement response, 
and b) displacement profiles

Figure 5: Three-point bending test: geometry and load-deflection 
response

Conclusions
We developed a new framework that allows the integration 
of a length scale in constitutive models. The development 
is based on the localised nature of failure in geomaterials 
and utilises the internal equilibrium across the localisation 
band. This results in constitutive models possessing a length 
scale, and featuring coupled stress behaviour. The fact that 
both kinematical compatibility and traction continuity are 
enforced at the constitutive level in the formulation, e.g. 
at integration points, makes the implementation in any 
numerical code straightforward. As a consequence, the new 
approach is applicable to any existing constitutive model 
and also any discretisation scheme. This is totally different 
from traditional approaches that always require the 
unphysical scaling of model parameters with the resolution 
of the discretisation (e.g. smeared crack approach), or 
modification of existing finite elements (e.g. EAS or 
XFEM). Numerical examples in this paper, in the context 
of quasibrittle failure, demonstrate the essential features 
and the promising performance of the new approach. 
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