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This article presents a simple method for estimating 
the maximum elastic roof displacement of a slender 
cantilever reinforced concrete RC wall, accounting for 
dynamic effects, named . The formulation computes 

 as a function of an equivalent concentrated lateral 
load, acting at an equivalent height hν. The dynamic 
effects are included by calculating the equivalent height 
of a load pattern representative of the first mode of 
vibration, h1, and reducing it to be consistent with a 
lateral load distribution that imposes a deformed shape 
representative of higher modes upon the wall. This is 
executed when dividing h1 by the dynamic amplification 
factor ων , previously defined for capacity-based shear 
design. The displacement  is obtained by imposing 
nominal yielding conditions at the critical cross-section 
of the wall, for the lateral load acting at the reduced 
height hν . Including well-established expressions for the 
nominal yielding curvature of RC cross-sections, a new 
formula for computing the maximum elastic top lateral 
drift ratio of the wall as a function of dimensionless 
numbers associated to the wall geometry, topology, 
and reinforcing steel is proposed. Using an example, 
it is shown that the novel expression provides more 
conservative results compared to those obtained with 
classical and recently proposed formulas, noting that 
this results into larger extensions of horizontal boundary 
confinement elements of a wall, for the same ultimate 
roof displacement. To conclude, the formulation is 
presented in a way suitable for its implementation within 
the Chilean code, and in simplified versions useful for 
quick hand calculations.

Keywords: reinforced concrete RC, slender cantilever 
wall, lateral roof displacement, elastic limit, dynamic 
effects

Este artículo presenta un método simple para estimar 
el desplazamiento elástico máximo de techo de un muro 
esbelto de hormigón armado en voladizo, incluyendo 
efectos dinámicos, llamado . La formulación calcula 

 en función de una fuerza lateral equivalente, ubicada 
en una altura equivalente hν. Los efectos dinámicos son 
incluidos calculando la altura equivalente asociada a 
una distribución de cargas laterales representativa del 
primer modo, h1, reduciéndola para ser consistente con 
un patrón de cargas laterales que impone una deformada 
representativa de modos superiores de vibrar sobre el muro. 
Esto se ejecuta dividiendo h1  por el factor de amplificación 
dinámica ων , definido previamente para diseño al corte 
por capacidad. El desplazamiento  se obtiene al 
imponer condiciones de fluencia nominal en la sección 
crítica del muro, para la carga equivalente aplicada en hν . 
Añadiendo expresiones bien establecidas para calcular la 
curvatura nominal de fluencia de secciones transversales 
de miembros de hormigón armado, se presenta una nueva 
fórmula para calcular la máxima razón de desplazamiento 
elástico de techo, en función de números adimensionales 
que dependen de la geometría, topología, y acero de 
refuerzo del muro. Usando un ejemplo, se demuestra que 
el nuevo método provee valores más conservadores que 
otros propuestos anteriormente, notando que esto resulta 
en mayores extensiones horizontales de elementos de 
borde, para el mismo desplazamiento último de techo. 
Para concluir, la formulación se presenta en una forma 
apta para ser implementada en la regulación sísmica 
chilena, y en versiones simplificadas útiles para cálculos 
a mano.

Palabras claves: hormigón armado, muro esbelto en 
voladizo, desplazamiento lateral de techo, límite elástico, 
efectos dinámicos
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Introduction
The seismic demands placed upon reinforced concrete RC 
walls can be visualized as a set of equivalent lateral loads 
with not necessarily equal magnitude at every floor level. 
The trivial case of this is a uniform distribution. To evaluate 
the maximum elastic (or nominal yielding) displacement 
of a cantilever wall at the roof level, the so called inverted 
triangle distribution is typically used. This corresponds to 
a linear variation of the lateral load with a maximum at the 
roof (top) level, and equal to zero at the base (e.g. Wallace 
and Moehle, 1992). Alternatively, it is often assumed that 
all the equivalent lateral load is concentrated at the roof 
level, as in direct displacement based design procedures 
(Priestley and Kowalsky, 1998; Paulay, 2002; Priestley et 
al., 2007), and previous design guides (Park and Paulay, 
1975, Paulay and Priestley, 1993).

The load patterns mentioned in the previous paragraph 
are aimed at imposing a deflected shape representative of 
the first mode of vibration of the wall. Nevertheless, it is 
acknowledged that the actual distribution of equivalent 
lateral forces along the height of the wall varies in time, 
and depends on the relative predominance of the modes 
of vibration and their periods, not only the first one. The 
consequence is a possible overestimation of the maximum 
elastic roof displacement of cantilever walls, generically 
named δte, when calculated per the aforementioned 
assumptions.

In the following, a simple method built upon the analogy 
with a cantilever beam loaded with a concentrated vertical 
force at a given distance from the support is presented. 
The deflection at the top of a cantilever wall within the 
elastic range, generically named δt, is calculated as the 
result of the action of a lumped lateral load V, placed at 
a height h from the critical section, such that it produces 
the same reactions at the base of the wall, compared to 
a distributed load pattern. Firstly, h is calculated for the 
first mode of vibration, such that h = h1. Subsequently, 
the formulation incorporates a reduction of h1 via ων, 
a dynamic amplification factor (Paulay and Priestley, 
1992; Priestley et al., 2007; Rutenberg, 2013), to account 
for dynamic effects in the calculation of δt , as initially 
proposed by Paulay and Priestley (1992) for estimating the 
shear demands placed upon RC walls during earthquakes, 
following capacity design principles. Finally, by imposing 

yielding conditions at the critical section of the wall, such 
that δte = , the maximum elastic roof displacement that 
accounts for dynamic effects, is calculated.

It is shown that the proposed formulae provide a more 
conservative approach for estimating δte , compared to 
others proposed in the literature (e.g. Wallace and Moehle, 
1992; Priestley et al., 2007; Massone et al., 2015).

Equivalent lateral load location, dynamic 
effects and shear demands
In the approach introduced in this article, the lateral load 
pattern corresponding to the equivalent lateral seismic 
actions along the height of the wall, is represented by an 
equivalent concentrated lateral load V. Per equilibrium, 
this force is equal to the shear at the base of the wall, and 
is located at h = M/V, where M is the overturning moment 
at the base of the wall (the critical section in this case) 
produced by V. Figure 1 presents two scenarios for this 
location: (1) V = V1 and h = h1, the lateral force and its 
location associated to the first mode; and (2) V = Vν and h 
= hν , the lateral force and its location which account for the 
dynamic effects produced by the higher modes.

Figure 1: Equivalent lateral load and its location: a) inverted 
triangle distribution, first mode deflected shape and b) higher-
mode load distribution and deflected shape

Figure 1a shows the equilibrium scenario of a slender 
cantilever wall subjected to an inverted triangle load 
distribution, associated to the first mode of vibration. In 
this case, the position of the equivalent load V1, is h1 = 
2/3hw, by definition. In the limit at the onset of the nominal 
yielding, i.e. when M1 = My and the curvature φ = φy at the 
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base of the wall, the base shear and equivalent lateral load 
is well determined by (1), such that:

 		            (1)

The resulting δt associated to this scenario is named δt
1, 

where the superscript ‘1’ refer to the first mode. When 
yielding is reached at the critical section of the wall, 
this displacement is referred to as the maximum elastic 
displacement, and is named  . This displacement is 
obtained by double integration of the curvature diagram 
over hw, assuming EI constant (Wallace and Moehle, 1992) 
and is given by (2):

					               (2)

Figure 1b shows a different situation, where the load 
distribution is not fully determined, but it imposes a 
deflected shape representative of higher-modes of vibration 
upon the wall, such that the equivalent lateral force is Vν. 
If in this case the elastic limit at the base of the wall is 
also imposed, Mν = My, with Mν the bending moment at 
the base of the wall due to the higher-mode load pattern. 
As depicted in Figure 1, hν  is smaller than h1, such that 
hν = h1/ων , with ων > 1.0, the dynamic amplification factor.

One consequence of the above is that the base shear Vν , 
depends not only on My and hw, but also on ων , such that:

 		            (3)

This is the principle behind the capacity-based procedure 
for shear design originally proposed by Paulay and 
Priestley in 1992. Nevertheless, as this method focuses on 
an ultimate limit state, the over-strength of the resisting 
moment at the base of the wall must be included, e.g. via 
Ωo = λMn/My, where the probable resisting moment at the 
base of the wall is defined as the nominal resisting moment 
Mn times a factor λ > 1.0 that accounts for hardening, and 
an increased yielding stress of the reinforcing steel with 
respect to the nominal value. In this situation, the capacity-
based shear demand is given by (4):

Vv,0 = ΩowvV1 				     	           (4)

a well-established formula since 1992 (Paulay and 
Priestley, 1992; SNZ 3101, 2006). It is important to recall 

that the first-mode reference force V1 is equal to the base 
shear resulting from the application of the lateral load 
distribution shown in Figure 1a, or, alternatively, of the 
equivalent lateral loads prescribed by codes, as required by 
SNZ 3101 (2006), for example. In any case, V1 should not 
be the shear obtained with a modal spectral analysis and a 
certain modal combination, because it already includes the 
effect of the higher modes, in a different way. Hence, this 
effect would be doubled when including the factor ων in 
the procedure.

A second implication of hν < h1, as explained later, is that 
 < . An analytical expression for  defined for the 

situation depicted in Figure 1b to evaluate differences 
with , however, had not been proposed yet. This can 
be partially attributed to the lack of an ad hoc intuitive 
lateral load distribution representative of that shown in 
Figure 1b (such as the inverted triangle for the first mode), 
which would allow obtaining  by double integration of 
the curvature diagram along the height of the wall, as for 
obtaining (2). This could also be partially due to the belief 
that the elastic limit at the base of the wall can only be 
reached with a deformed shape representative of the first 
mode, as typically the maximum inelastic response of the 
wall is assumed to occur whilst it deforms in this situation 
(e.g. in Priestley et al., 2007).

In the following, an analytical expression for calculating 
, which uses the conceptual features of the dynamic 

amplification factor ων is developed.

Lateral roof displacement including 
dynamic effects
Consider a cantilever beam of length L and constant 
stiffness EI, loaded with a vertical force F located at a 
distance a from the fixed end, as shown in Figure 2. As can 
be determined using energy methods, described in most 
structural analysis textbooks, the vertical displacement D 
at the free end of the cantilever beam shown in Figure 2, 
considering flexural deformations only, is given by (5):

 		            (5)

Similarly, referring to Figure 1b, the lateral displacement 
at the top of a slender cantilever wall in the elastic range, 
δt

ν, produced by the lateral load Vν, acting at the height hν 
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is:

	  			             (6)

where, EI is the flexural stiffness of the cross-section of 
the wall (moment-curvature stiffness). Note that the right 
hand side of (5) is valid only if EI is constant along the 
height of the wall. In this case, as a first approximation, 
whose limitations are included at the end of this article, EI 
is taken constant along hw, and equal to that of the critical 
cross-section of the wall, as explained below.

Figure 2: Cantilever beam analogy

With reference to Figure 1b, by equilibrium, Mν = Vν hν. 
Up to the yielding point, in the elastic range, this moment 
is linearly proportional to the curvature of the crossed-
section at the base of the wall φ, such that Mν = EIφ. 
Equating these two expressions and rearranging, it follows 
that:

 	  				              (7)

Replacing (7) into (6), leads to (8):

 				              (8)

In the elastic limit or yielding point, the curvature at the 
base of the wall is φ = φy, the nominal yielding curvature. 
This curvature is further defined (Paulay, 2002) as in (9) 
and (10):

where, M’y  , φ’y and β, are the bending moment, curvature, 
and neutral axis depth (as a fraction of lw), respectively, at 
first yield; and εy the yielding strain of the reinforcing steel. 

Combining (10) and (9), an expression for η takes the 
following form:

η = My φy’lw  / (M’y    ey ) 				            (11)

It has been shown (Priestley and Kowalsky, 1998; Paulay, 
2002; Priestley, 2003) that η is approximately constant, 
and can be taken as η = 2.0 for rectangular reinforced 
concrete walls, for example, within a plus minus 15% error 
(Priestley, 2003). Nevertheless, it is easy to calculate this 
number on a case by case basis using a sectional analysis 
and (11). 

Imposing φ = φy in (8), such that δt
ν = , and using 

expression (10) for φy, (8) becomes (12):

				           (12)

Defining α = h1/hw, the normalized height of the equivalent 
first-mode lateral load pattern, and recalling that hν = h1/ων, 
(12) can be rewritten as:

 			           (13)

Dividing (13) into hw, and rearranging, it becomes:

 		          (14)

Further, defining Ar = hw/lw, the aspect ratio of the wall; and 
dr  = /hw, the maximum elastic roof drift ratio including 
dynamic effects, (14) can be written as:

dr  = (α /6ων)(3-α /ων)η εy Ar 		          (15)

(15) is a novel expression that defines the maximum elastic 
roof displacement capacity of a slender cantilever wall, 
accounting for dynamic effects, in dimensionless terms. 
Obviously, when ων = 1.0, (15) reduces to the case where 
hν = h1, and dr  = drte

1                 , defined in (16):

drte
1                    = (α /6)(3-α) η εy Ar  			           (16)

To construct an expression for comparison with other non-
dimensionless formulas with the form of (2), (14) is firstly 
divided by hw, such that:

 		          (17)

Noting that the third factor of the right-hand side of (17) is 
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equal to φy as shown in (10), it follows that:

φyhw
2         	 = (α/6ων)(3-α/ων) 			           (18)

Defining γ = /(φyhw
2  ), and replacing into (18) yields:

γ = (α/6ων)(3-α/ων) 				            (19)

The parameter γ defined in (19) serves for comparison with 
(2), where γ = 11/40, as well as with other limits proposed 
by other researchers, as shown later on.

Selection of ων
The variable ων depends on the height of the wall, or, 
indirectly, on the number of storeys of the building, as 
proposed by Paulay and Priestley (1992). There are several 
other expressions for ων. For a comprehensive review 
of the literature on this subject, the reader is referred to 
Rutenberg (2013).

In the formulation of Paulay and Priestley (1992) 
considered herein, ων varies linearly from 1.0 to 1.8 for 
one and six storeys, and it is limited to 1.8 for buildings 
of six storeys or more. Nevertheless, based on numerical 
work done by Quintana Gallo (2008), it is suggested that 
the upper limit of ων = 2.0 be considered. This value is used 
in the formulation of the simplified expressions presented 
at the end of this article. On the other hand, the factor ων 
is explicitly included in the general formulation for  to 
allow for the use of ad hoc amplification factors if desired.

Example for discussion
As an example for discussion, consider the case of a 
rectangular cantilever wall with the following properties: 
hw = 25 m, and lw = 5 m, such that Ar = 5. Take η = 2.0 for 
a rectangular wall (Priestley and Kowalsky, 1998; Paulay, 
2002; Priestley et al., 2007), and consider a steel with
εy = 0.002 = 0.2%, as in the Chilean practice. Assume the 
action of an inverted triangle lateral load distribution (see 
Figure 1a), such that α = 2/3. For now, neglect the dynamic 
effects, i.e. take ων = 1.0.

Using the novel expression proposed in (19), γ = 7/27 
≈ 0.26. From the classical expression presented in (2), 
γ = 11/40 = 0.275. Hence, expression (19) very closely 
approximates the elastic displacement obtained with (2) 
(Wallace and Moehle 1992). Now consider α = 1, such 

that the equivalent lateral load is located at the roof level. 
In this case, (19) gives γ = 1/3 ≈ 0.33, the value used in 
direct displacement based design (Priestley et al., 1998; 
Paulay, 2002) to estimate the yielding roof displacement 
of a wall, as initially proposed by Park and Paulay (1975) 
for cantilever beams.

Now include the dynamic effects. Note that for an inter-
storey height, hs = 3 m, typical of the New Zealand 
construction practice, the equivalent number of storeys of 
the wall of the example is n = 25/3 ≈ 8.3 > 6. Note that in 
Chile hs is typically equal to 2.6 m, such that n in this case, 
would be larger than its New Zealand counterpart. Hence, 
the upper limit of ων applies in both cases, and is herein 
conservatively taken as ων = 2.0, as mentioned before. 
Replacing this and the other data into (19), γ = 4/27 ≈ 0.15, 
which is significantly smaller than the previously examined 
values. This approximation is also more conservative than 
that proposed by Massone et al. (2015), for example, who 
suggest using γ = 0.22, based on the results of dynamic 
analyses.

Calculating drte for the wall of the example with (16), 
without consideration of dynamic effects, i.e. for the first 
mode only: drte

1   = (1/9)·(7/3)·2.0·0.002·5 = (14/27)% = 
0.52%, a result almost identical to that obtained with the 
classical (2), divided by hw. On the other hand, considering 
ων = 2.0 and (15): dr  = (1/18)·(8/3)·2.0·0.002·5 = (8/27)% 
= 0.30%. Again, it is noted that neglecting the dynamic 
effects implies a significant overestimation of δte. 

The estimation of δte is important in the design and 
detailing of confinement boundary elements of RC walls, 
within a plastic-hinge model approach, currently required 
by the Chilean RC code provisions (DS60, 2011). The 
reason is that an overestimation of δte leads to a smaller 
required plastic roof displacement δtp (and equivalently 
smaller plastic rotations at the base of the wall), for 
achieving the same ultimate roof lateral displacement δtu. 
As a result, smaller horizontal extensions of the boundary 
confinement elements would be required. Therefore, the 
approach introduced in this article might serve as a more 
conservative, yet rational, tool for design.

Complete and simplified proposed 
expressions
To be considered within the Chilean code requirements, 
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the following expressions are suggested for computing  .
For the sake of simplicity, in the following, the scripts ν 
and t are dropped, such that δe =  , to be consistent with 
the nomenclature of DS60 (2011), such that:

with

					             (21)

and

 			           (22)

where, F1,k and h1,k are the magnitude and height of the 
lateral force associated to the storey k (k = 1 to n), obtained 
with a code-prescribed equivalent lateral force analysis, 
e.g. that required by the Chilean standard NCh433 (INN, 
2009).

Alternatively, assuming an inverted triangle load pattern, 
α = 2/3. Replacing this value in (20) yields:

 				            (23)

In both formulations, the parameter η can be calculated 
using (11), or can be taken as:

η = 2.0 for rectangular and asymmetric (flanged) walls 
with the flange in tension,

η = 1.5 for asymmetric (flanged) walls with the flange in 
compression.

Further simplification of (23) by taking ων = 2.0, it reduces 
to (24):

 				            (24)

Note that (24) is appropriate for a single degree of freedom 
(SDOF) system, where α = 1/3 and ων = 1.0, by definition. 
Replacing these values into (20) also leads to (24). Hence, 
for SDOF systems, (24) should be the equation to refer to. 

As a rule of thumb, for rectangular walls, (24) can be 
additionally simplified taking η = 2.0, and εy = 0.2%, as in 
the Chilean practice, such that:

 			           (25)

For walls with flanged cross-sections with the flange 
acting in compression, the right hand side of (25) should 
be multiplied by 3/4, as in that case η = 1.5 instead of 2.0 
(Priestley et al., 2007; Quintana Gallo, 2008, 2014).

Finally, note that if one neglects the dynamic effects (i.e. 
ων = 1.0), as in a pushover analysis, and uses an inverted 
triangle load pattern such that α = 2/3, as in (20), using η 
= 2.0 and εy = 0.2% leads to:

 			           (26)

Again, for flanged walls with the flange in compression, 
the right-hand side of (26) should be multiplied by 3/4. 
By comparison of (25) with (26), it is found that when 
neglecting the dynamic effects, δe is overestimated by 
approximately 70%, under all the assumptions considered 
in the simplified versions of (20).

Limitations of the approach and further 
research
The assumptions made for constructing the formulae 
introduced in this paper are discussed to open opportunities 
for its evaluation and rational criticism in the sense of 
Popper (1963) (see also Miller (1994) and Verdugo (1995)).

Firstly, it was assumed that the cross-section stiffness EI is 
constant along the height of the wall: this is not true when 
the wall is placed within a building, in particular, as the 
axial load decreases with the height, and normally so does 
the amount of longitudinal reinforcing steel. This results 
in a decreased Mn in the upper floors, and consequently 
a reduced flexural stiffness EI, due to both effects. The 
implication is that, for the same externally imposed 
lateral load pattern, the curvature of the wall will be larger 
along its height when the strength variation is included 
compared to when is not. However, this would traduce 
into greater values of δte compared to those calculated with 
the aforementioned assumption. Hence, the approximation 
leads to conservative results.

Secondly, the value of ων considered for developing the 
simplified formulas, might not be appropriate for all cases, 
and should be understood as a ‘current’ upper bound, 
which could well be increased in the future, depending on 
the evidence. 

Lastly, any connection of the wall with the surrounding 
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structure is neglected. Therefore, at least the coupling 
effects of the floor slabs and/or beams, which can be more 
pronounced for walls ending in the façade of a building, 
are neglected. This, in turn, means neglecting the variation 
of the axial load imposed to the wall by coupling with the 
rest of the structure via these members.

As future research to cover some of the aspects outlined 
above, and critically evaluating the proposed formulae, 
numerical simulations of a building with rectangular walls 
of different aspect ratios Ar, modelled with macro and fibre 
elements, are currently under preparation. Additionally, 
collaborative efforts with researchers working on the 
same topic, are expected to provide a more comprehensive 
evaluation of the approach, when including the results of 
nonlinear dynamic analyses of buildings with asymmetric 
(flanged) walls.

Summary
This article provides a simple formulation for calculating 
the maximum elastic (yielding) roof displacement of 
a slender cantilever RC wall, accounting for dynamic 
effects. This displacement is calculated as a function of the 
equivalent lateral force resulting from a certain lateral load 
distribution, and its equivalent height, measured from the 
critical section of the wall. The equivalent height is firstly 
calculated for a load distribution associated to the first mode 
of vibration (e.g. an inversed triangle), and is subsequently 
reduced to account for a load pattern representative of a 
higher-mode response. The ratio between both heights 
corresponds to the dynamic amplification factor (ων > 
1.0) used in capacity-based design for shear actions, as 
proposed in the past by other researchers. An expression 
for the maximum lateral roof elastic drift ratio of a slender 
cantilever wall is formulated, including dimensionless 
numbers only, using a well-established expression for 
the yielding curvature of RC members, and assuming 
that the nominal yielding point at the base of the wall 
is reached when the equivalent load acts at the reduced 
height. Developing a common parameter for comparison, 
and using a simple numerical example, it is shown that 
the proposed novel formula predicts smaller maximum 
elastic deflections compared to expressions previously 
presented in the literature. Finally, different versions of the 
proposed formulae, with various levels of simplification, 

are presented, aiming at its consideration for its use within 
the Chilean RC code, after a thorough critical evaluation 
with nonlinear analyses.
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