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Avalanches are natural disasters with substantial 
human and economic consequences worldwide. Chile, 
a mountainous country, is particularly susceptible 
to these events. In this study, we employ a numerical 
technique based on the Saint-Venant system of 
differential equations and the well-balanced Finite 
Volume method with hydrostatic reconstruction to 
analyse snow avalanche behaviour, taking into account 
topography and friction as described by the Voellmy-
Salm rheology model. The Rigopiano avalanche 
in Italy serves as a case study to test and validate 
our strategy, demonstrating the model’s potential in 
simulating real-world avalanche events. The numerical 
model is thoroughly explained, and the results for the 
real avalanche case are presented visually, showing 
close alignment with field data and estimates from the 
literature. In conclusion, we highlight key findings, 
emphasize the importance of further research in 
avalanche modelling, and suggest the potential 
applications of these models for avalanche risk 
management in regions like Chile.

Keywords: avalanches, natural disasters, Saint Venant's 
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Las avalanchas son desastres naturales con importantes 
consecuencias humanas y económicas en todo el mundo. 
Chile, un país montañoso, es particularmente susceptible 
a estos eventos. En este estudio, empleamos una técnica 
numérica basada en el sistema de ecuaciones diferenciales 
de Saint-Venant y el método de volúmenes finito bien 
balanceado con reconstrucción hidrostática para analizar 
el comportamiento de las avalanchas de nieve, teniendo en 
cuenta la topografía y la fricción descritas por la reología 
del modelo de Voellmy-Salm. La avalancha de Rigopiano 
en Italia sirve como caso de estudio para probar y validar 
nuestra estrategia, demostrando el potencial del modelo 
para simular eventos de avalanchas del mundo real. El 
modelo numérico se explica detalladamente y los resultados 
para el caso de avalancha real se presentan visualmente, 
mostrando una estrecha alineación con los datos de campo y 
las estimaciones de la literatura. En conclusión, destacamos 
los hallazgos clave, enfatizamos la importancia de seguir 
investigando en el modelado de avalanchas y sugerimos las 
posibles aplicaciones de estos modelos para la gestión del 
riesgo de avalanchas en regiones como Chile.

Palabras clave: avalanchas, desastres naturales, ecuaciones 
de Saint Venant, volúmenes finitos bien balanceados, 
reconstrucción hidrostática

Introduction
The effects of climate change on natural disasters are 
attracting considerable attention. These changes are 
susceptible to trigger snow avalanches. Snow avalanches 
are defined as the rapid descent of snow masses down steep 

slopes as result of gravity, often dragging soil, rocks and 
vegetation (Pudasaini and Hutter, 2007).
An estimated 250 people per year fatalities are due to snow 
avalanches worldwide (Schweizer et al., 2015). In certain 
regions, the economic cost to avoid the effects of snow 
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avalanches can be very high. For example, it is estimated 
that the average annual cost in Canada exceeds U$5 billion 
(Schweizer et al., 2015).

In Chile, there are large areas with high altitudes where 
snow avalanches can occur. According to published 
statistics on fatalities in central Chile between 1906 and 
2001, of the 378 total victims, 241 (63.8%) were related to 
mining activities, while 52 (13.8%) were related to tourism 
(Ramírez and Mery, 2007).

Currently, only the mining sector in the Center-North zone 
uses meteorological records, data analysis, and avalanche 
simulation for avalanche risk management (Ramírez and 
Mery, 2007). In Chile, there is no governmental avalanche 
warning service, and only private groups such as ski resorts 
and mining enterprises take preventative steps.

Using a numerical model to simulate snow height and flow 
velocity is one method for analysing avalanche dynamics. 
Numerous physical models exist to describe avalanches. 
For this purpose, the Saint-Venant system of differential 
equations is widely used (Pudasaini and Hutter, 2007). 
The model includes friction effect as a source term. The 
frictional rheology model used varies depending on the 
fluid characteristics. Consideration will be given to the 
Voellmy-Salm rheology model proposed by Salm (1993) 
and Voellmy (1955). However, we can mention that other 
physical models can be used. For example, the Savage-
Hutter equations of various types are used to model 
avalanches (Savage and Hutter, 1991). The numerical 
model that we use is the finite volume method, which 
uses a non-conservative scheme. The main approach is 
described by Bouchut (2004), along with the hydrostatic 
reconstruction scheme. This approach will be used to 
conduct our simulations. The scheme is well-balanced, 
consistent, and stable (Bouchut, 2004).

We might list a few publications that complement and 
work with this strategy. The hydrostatic reconstruction is 
utilized by Audusse (2004) for a well-balanced approach 
for the Saint-Venant problem with topography, including 
proofs and numerical examples, as well as an extension 
to second order. The enhanced second-order approach 
shown by Kurganov and Petrova (2007) preserves steady 
states and fluid height positivity. In reference to pyroclastic 
avalanches, a numerical technique using the Voellmy-Salm 

rheology is discussed by de’Michieli Vitturi et al. (2018) 
along with other numerical examples.

The Rigopiano avalanche in Italy was investigated using 
the numerical technique in this study. There is abundant 
literature about this disaster, and numerous studies have 
been conducted in the zone to establish the event’s 
characteristics. The meteorological conditions and 
fluid dynamics are detailed by Frigo et al. (2021). The 
velocity and departure distance estimates are provided 
by Issler (2020). We will provide graphs of the numerical 
simulations performed with the scheme, using estimates 
for the physical parameters and assumptions about the 
initial conditions that we consider reasonable according 
to the available data. Finally, we will conclude, describe 
various numerical approach enhancements that may be 
investigated, and provide some suggestions for future 
studies.

Methodology
We consider the Saint-Venant system with Voellmy-Salm 
rheology model as avalanche model. The model is given 
by

where h = h(x, y, t) is the fluid height, u = u(x, y, t) and v 
= v(x, y, t) are the components of the velocity, z = z(x, y) 
is the topography height,  is the gravitational constant, 
m is Coulomb’s coefficient of friction (Popov, 2010) and 
x is the turbulent friction coefficient (Ferziger and Peric, 
2002). We also consider the initial conditions: 

We define Z = z and we set U = (h, hu, hv) as the system 
solution. We have made the following assumptions for the 
avalanche model:
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We consider a critical point for this system a point (U, 
Z) such that FU(U, Z) is not invertible. We can write the 
equations in the form

With

The eigenvalues of A(U, Z) are:

Then, we have that at every noncritical point, the system 
is hyperbolic (A(U, Z) is diagonalizable). The stationary 
states are the solutions U(x) independent of time. These 
states are relevant because generally represent the solution 
when time tend to infinity. The stationary states are the 
functions h(x) and u(x) that satisfy:

The stationary states at rest are given by

In the finite volume method, a mesh of points xi +1/2, i ∈ 
, in space is created. Finite volumes are defined by Ci = 

]xi ̠ 1/2, xi +1/2[. We consider a time step Δt and define tn+1 
= tn + Δt, n ∈ . We want to approximate the solution U(x, 
t) by discrete values ,  i ∈ , n ∈ . This is,

We consider a first order non conservative finite volume 
scheme given by

with

1. The avalanche can be treated as a homogeneous fluid 
(the density is constant in space and time).

 2. The velocity in the vertical direction is negligible.

 3. The pressure distribution is hydrostatic in the vertical 
direction.

 4. The curvature of the bed is negligible.

5. Normal and shear stresses on the free surface are 
negligible.

6. We can consider that the bed has a gentle slope 
concerning the horizontal plane of reference. This 
means we can approximate the normal to the bed with 
the vertical direction.

The last assumption is not realistic in everyday avalanche 
events with steep terrain. However, first, we will develop 
the scheme for this model. Later, we will show a more 
accurate physical model that considers this problem. Then, 
we will discuss a way to adapt the numerical scheme for 
the new model.

In this work we use a non conservative finite volume 
scheme. We study this method in parts, first developing 
the one dimensional model, then using this scheme for the 
two-dimensional problem, and finally, we include friction 
in the model.

One-dimensional frictionless model
The one-dimensional model without friction is given by

We define U = (h, hu). We can write the equations as a 
quasi-lineal system in the variable U = (U, Z).

with
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where , and Fl and Fr are the left and right 
numerical fluxes, respectively. 

We impose a Courant-Friedrichs-Lewy (CFL) condition 
for the time step to allow the convergence of the numerical 
model. The condition has the following form 

where a = max|λ|, is the maximum modulus of the 
eigenvalues of the matrix system, evaluated for all cells at 
time step n (Audusse, 2004). 

A well balanced scheme for this problem is the hydrostatic 
reconstruction scheme (Bouchut, 2004). Considering 
the topography, to calculate the fluxes between the mesh 
elements it is necessary to reconstruct the left and right 
solution states at each interface. We denote this states Ul = 
(hl, hlul) and Ur = (hr, hrur), and reconstructed states as U*

l   = 
(h*

l , h*
l ul) and U*

r  =(h*
r , h*

r ur), respectively. 

In the hydrostatic reconstruction scheme, the steady state 
relations are replaced by 

With these relations, the reconstructed states are obtained 
by 

where ΔZ = Zr − Zl. The fluxes will be given by 

where  is a consistent numerical flux for the Saint-Venant 
problem without topography. In our case, we will use the 
Lax-Friedrichs flux, given by 

It can be proven that with this flux, the scheme is 
conservative in h, preserves the non-negativity of h in 
the interface, and is well balanced, consistent and stable. 
Further details and technical explanations of concepts and 
the proofs of these propositions are presented by Bouchut 
(2004). 

Two-dimensional frictionless model 
Now we can proceed with the avalanche model in two 
dimensions without friction force. The two-dimensional 
Saint-Venant problem with frictionless topography is 
given by 

The solutions of the system can develop discontinuities, 
which means we have to consider weak solutions. These 
solutions are well defined under the assumption that the 
topography z ∈ W1,∞(R) (Dafermos, 2000). To find a 
unique physical solution we use an entropy condition as an 
additional admissibility criteria. The details of the theory 
about uniqueness of solution are explained by Fjordholm 
et al. (2011). For the finite volume method, we consider a 
mesh of elements Ci in two dimensions. Let Γij be the edge 
between the volumes Ci  and Cj, and nij the unitary normal 
vector with orientation from Ci  to Cj. Let U n

i    be the values 
of the solution in some interior point of the element Ci at 
time tn. The finite volume method is given by 

where |Ci| is the area of the control volume Ci, |Γij| is the 
length of the edge Γij, Ki is the set of indices of the cells 
that share edges with Ci, and Fij is the flux between Ci and 
Cj with 
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Fij = F (Ui, Uj , Zi, Zj, nij)            (21) 

Let n = (n1, n2) be the unit vector with its rotation matrix 
given by

Let x´ = Rnx and (u´, v´) = Rn
1(u, v). Then U´ = (h, hu´, 

hv´) is a solution to the two-dimensional problem. We can 
compute the numerical fluxes through the following one-
dimensional problem 

Let  Fl (U´l, U´r, ΔZ) = (Fl
0, Fl

1, Fl
2) be the flux obtained 

from the one-dimensional problem with U´. Then the left 
flux of the original two dimensional problem is given by 

Let (h, hu, hv)* = (h, -hu, -hv). By symmetry we have 

The right flux of the original two dimensional problem is 
given by 

Now we explain how we solve the one-dimensional 
problem in (23). 

We can obtain the numerical flux for the problem with 
the first and second equation with the method for one-
dimensional problems shown in the previous section. The 
third equation is a passive transport equation 

We obtain the flux for this part using 

And analogously with Fr
2 .

Two-dimensional model with friction 
Now we can consider the two-dimensional problem 
with friction given by (1). Friction in the Voellmy-Salm 
rheological model includes two parts:  

1. Coulomb friction:  

2. Turbulent friction:  

Each type of friction is treated differently in the numerical 
scheme. We can include the Coulomb friction in the 
numerical method by modifying the source term in our 
scheme. To do this, the numerical fluxes are computed 
with 

where xi and xj are arbitrary points in the interior of the 
elements Ci  and Cj, respectively.  We define  

   

In the above expression, we use

 

For the turbulent friction, we use a splitting method to 
ensure the scheme stability (Bouchut et al., 2020). Once 
the solution of the finite volume method is obtained, which 
we will denote as h*, u*, v*, we proceed to include the 
turbulent friction. The final solution is given by 
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where w = u2 + v2.

Model in global coordinates 
As we explained before, the model studied considers a 
smooth slope. In real situations, this assumption can be 
unsatisfactory. A way to solve this problem is to use a model 
in global coordinates that considers the effect on vertical 
velocity given by steep terrain. The scheme derived from 
this flow analysis is explained in detail by Zugliani and 
Rosatti (2021). In Figure 1 we show a control volume for 
the one-dimensional model with a slope angle θ. 

Figure 1: Control volume (x is horizontal axis and z is vertical 
axis). hv is the height of the fluid, zb is the height of the terrain 
topography and ux is the velocity component in x
 
The system of equations in global coordinates is given by 

where 

This model can be extended to two dimensions, giving the 
following system 

We can rewrite this system in the form of the avalanche 
model (1) as follows

where  =  cos2 θ and x = cos2 θ. In this way we can use 
the hydrostatic reconstruction method for this system with 
the new parameters  and x. We recall that this method 
allows incorporating the Coulomb friction. In the case of 
turbulent friction, it is added by means of splitting, and to 
do so the original parameter  is used, as can be seen from 
the system of equations. 

Results 
The numerical scheme was applied for the case of the snow 
avalanche of January 18, 2017 at Rigopiano, Gran Sasso 
National Park (Frigo et al., 2020). This natural disaster 



60

Campos, F., Sepúlveda, M., Abarca del Río, R. and Issler, D. (2023). Study of avalanche models 
using well-balanced finite volume schemes.  33, 54-63

destroyed the Rigopiano hotel, resulting in the death of 
29 people. The avalanche was a mixture of snow and 
wood, displacing rocks and trees in its path. The damage 
generated in the event shows that the avalanche was of 
great intensity. Figure 2 shows an aerial view of the path 
of the avalanche before and after the event.

Figure 2: Aerial view of the path of the avalanche over Rigopiano 
Hotel, before (2015) and after (2017) the catastrophic event. The 
image is taken from Frigo et al. (2020)
 
Figure 3 shows a map of the Abrazzo region, where the 
avalanche happened. The position of the Rigopiano Hotel 
is indicated. The location of snow measurement points in 
the area is also shown. We also show a map of Italy with 
the position of the Abrazzo region. 

Figure 3: Geographical area of the Abrazzo region with the 
Rigopiano Hotel (green triangle) position. Snow gauges in the 
area are also shown (yellow circles). Italy map on top with 
Abrazzo region marked in red. The right diagrams show the 
relief’s height and slope, indicating the avalanche’s main flow. 
The image is taken from Bocchiola et al. (2020).

A simulation of the avalanche at Rigopiano using the 
system of equations in global coordinates given in (41)
is now presented. The numerical method consists of finite 
volumes with a hydrostatic reconstruction scheme, with 
the parameters for the new physical model being modified. 
Figure 4 displays the topography z of the Rigopiano area 
under study. 

Figure 4: Rigopiano topography with height z. This surface is 
considered as the relief without snow of the area. Right scale is 
given in m

We worked with a sub-domain of this domain for the 
numerical simulation, based on the area shown in the Figure 
3. This sub-domain’s dimensions are approximately 989 m 
x 989 m, with approximates coordinates in Figure 4 given 
by [4.0001·105 , 4.0100·105].[4.6970·106 , 4.6980·106]. 
The topography in this sub-domain is shown in Figure 5. 

Figure 5: Topography in sub-domain with height z. The isolevels 
are shown. Right scale is given in m
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The initial condition for the snow height is considered to 
be a constant slope with a maximum height of 2 m that 
goes to 0 m at the isolevel z = 1600 m. As data we used g = 
9.8 m/s, µ = 0.15, k = g/x= 0.002 and an angle of slope θ = 
30. Figures 6 show the results at different times.

The model we  use  is  the Saint-Venant  system with 
Voellmy-Salm rheology model  in global coordinates. The 
numerical scheme we use is the finite volume method with 
hydrostatic reconstruction scheme. 

The domain  used for this simulation  is the closer to the 
real avalanche for the initial snow depth and for the flux 
behaviour.

a) Simulation at t = 0 s. d) Simulation at t = 15 s.

e) Simulation at t = 20 s.b) Simulation at t = 5 s.

c) Simulation at t = 10 s.

Figure 6: Numerical simulation  of the avalanche at Rigopiano 
at different times. The snow depth h  is shown with the isolevels. 
The scale is in m. 
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Figure 6a) shows the initial  condition.  Because the lack of 
data, we made a reasonable assumption for this condition, 
with a constant slope with a maximum height of 2 m.

We can see the snow advance in the direction of the slope 
of the topography, which is the expected result for the 
avalanche simulation. 

Conclusions
In this comprehensive study, we have modelled an 
avalanche by employing the Saint-Venant system of 
differential equations, considering topography and friction 
as described by the Voellmy-Salm rheology model. The 
finite volume method, with hydrostatic reconstruction, 
has been utilized to examine a real-world scenario. 
Our methodology was rigorously tested using various 
examples from the literature, spanning one-dimensional 
and two-dimensional cases, as well as both frictional and 
frictionless scenarios. This comprehensive testing enabled 
us to calibrate and validate the numerical model, ensuring 
its accuracy and reliability.

The primary focus of our investigation centred on the 
Rigopiano avalanche, a real-life event that highlights 
the importance of steep terrain in determining avalanche 
outcomes. To accurately model this event, it was crucial to 
account for the impact of such conditions on flow dynamics 
and incorporate these effects into the system of equations. 
While specific information regarding initial snow depth 
was unavailable, we reasonably assumed a maximum 
snow height of 2 m. Furthermore, we were able to make 
well-founded estimations of friction characteristics and 
slope angle (30 degrees) for the system based on relevant 
literature and research.

Initially, we chose a smaller domain for our simulations but 
later discovered that the actual avalanche had originated 
near the edge of the original domain. By adjusting our 
model accordingly, we significantly improved the accuracy 
of our initial numerical results. Our refined model now 
demonstrates that the snow flux closely aligns with the 
field data collected at Rigopiano, and the snow velocity 
is consistent with estimates found in the literature. While 
more precise data would allow for an even more accurate 
comparison with the actual avalanche, our initial numerical 
model offers a reasonable simulation of snow behaviour as 
a first approach.

Moving forward, there are several possible improvements 
to be considered. For instance, we could explore more 
sophisticated physical models that improve the flow 
characteristics of avalanches. Moreover, it is worth 
investigating the use of more precise numerical models, 
particularly regarding the incorporation of friction and the 
impact of slope angle on velocity. We employed a Lax-
Friedrichs flux for the numerical scheme and hydrostatic 
reconstruction, which is straightforward to implement 
but suffers from excessive numerical dissipation. This 
limitation can be mitigated by substituting the flux with an 
upwind HLLC flux and applying second-order extensions 
using the Osher-Solomon-Toro Riemann solver. We are 
currently conducting numerical experiments in this area, 
which could potentially lead to future research.

In Chile, there is significant potential for the application 
of avalanche-related research, particularly as rising 
temperatures increasingly impact the region. To address 
these hazards, it is crucial to employ a variety of investigative 
methods. Numerical models, such as the one presented 
in this study, can complement field observations and 
laboratory research, contributing to a more comprehensive 
understanding of avalanche dynamics. There are many 
opportunities for further research in this field in Chile, since 
developing and refining these models can lead to more 
effective avalanche prediction and mitigation strategies.

To our knowledge, this study represents the first of its 
kind in Chile, and we anticipate that the ideas presented 
here will be further enhanced and applied to other real-
world situations in the near future. As research in this area 
progresses, it has the potential to significantly improve 
avalanche risk management, ultimately contributing to the 
safety and well-being of communities in avalancheprone 
regions. By enhancing our understanding of avalanche 
behaviour and refining the predictive capabilities of our 
numerical models, we can develop more effective and 
targeted strategies for avalanche prevention, preparedness, 
and response.

In conclusion, this work demonstrates the potential of 
using the Saint-Venant system of differential equations, 
coupled with the finite volume method and hydrostatic 
reconstruction, to model avalanches accurately. Our initial 
model has shown promising in simulating the Rigopiano 
avalanche, and with further improvements, it can provide 
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valuable insights into the behaviour of avalanches in various 
environments. As we refine these models and explore 
their applications, we can better understand the complex 
dynamics of avalanches, ultimately working towards 
more effective avalanche risk management strategies 
and protecting communities in avalanche-prone areas.
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