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Finite element (FEM) based software is frequently used 
in practice for tunnel design, alongside the traditional 
analytical and empirical solutions. Design is not the 
only challenge in this kind of projects, there are other 
important factors such as considering what is necessary 
to develop an efficient construction plan under a schedule 
and foreseeing possible changes that modify the original 
design. The use of two-dimensional (2D) FEM is one 
of the main tools used in the industry. However, 2D 
results yield not an entirely accurate analysis, since the 
behaviour of the infrastructure is considered as three-
dimensional (3D). This paper presents nomographs 
and a 3D and 2D relationship, to rapidly estimate 
values of elastic 3D and 2D displacements produced 
in the periphery of a deep circular tunnel, inside soils 
of different rigidities. Graphics given correspond to 
five different radii and for a 100 m excavation length. 
Nomographs were obtained from RS3© and RS2© 
FEM simulations and according to the elastic theory. 
Geotechnical parameters correspond to a constant 
friction angle, cohesion and soil specific weight. FEM 
analysis was made using the Mohr-Coulomb model, 
considering isotropic conditions.

Keywords: nomograph, finite element method FEM, 
circular tunnel, elastic analysis

El método de elementos finitos (FEM) se utiliza frecuentemente 
en la práctica para el diseño de túneles, junto con las 
soluciones analíticas y empíricas tradicionales. El diseño 
no es el único desafío en este tipo de proyectos, existen 
otros factores importantes como considerar lo necesario 
para desarrollar un plan constructivo eficiente bajo un 
cronograma y prever posibles cambios que modifiquen el 
diseño original. El uso de FEM bidimensional (2D) es una 
de las principales herramientas utilizadas en la industria. Sin 
embargo, los resultados 2D proporcionan un análisis no del 
todo preciso, ya que el comportamiento de la infraestructura 
se considera tridimensional (3D). Este trabajo presenta 
nomogramas y una relación entre 3D y 2D para estimar 
valores de desplazamientos elásticos 3D y 2D, producidos 
en la periferia de un túnel circular profundo, dentro de 
suelos de diferentes rigideces. Los gráficos corresponden 
a cinco radios diferentes de túneles y para una longitud de 
excavación de 100 m. Los nomogramas se obtuvieron a partir 
de simulaciones FEM RS3© y RS2© y de acuerdo con la 
teoría elástica. Los parámetros geotécnicos corresponden a 
un ángulo de fricción constante, cohesión y peso específico 
del suelo. El análisis FEM se realizó utilizando el modelo de 
Mohr-Coulomb, considerando condiciones isotrópicas.

Palabras clave: nomograma, método de elementos finitos, 
túnel circular, análisis elástico

Introduction
Tunnel techniques have been developed in soils and rocks 
for several thousands of years. Although there are reports 

of modern tunnelling theories, the first challenges to set up 
design methods and techniques for tunnel construction were 
initiated by Terzaghi (1942, 1946), through implementing 
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design rules for primary supports. In the same manner 
Broms and Bennermark (1967) contributed with the 
study of vertical excavations and Peck (1969) established 
other concepts related to tunnel support, as well as for the 
evaluation of the superficial settlements. Subsequently, 
criteria of analysis were developed to establish analytical 
and empirical methods, which focused on reviewing the 
face and in the general stability of the tunnel. On one side, 
empirical methods which are established on the experience 
gained in practice provide a useful solution, such as those 
by Bieniawski (1989) and Hoek and Brown (1980, 1997), 
among others. On the other hand, the analytical methods 
in addition to the experience formulation, include the soil 
mechanics principles, for example methods applied in soils 
by Tamez (1984) and Moreno and Schmmitter (1981). 
Analytical solutions for stress and displacement fields 
around a tunnel and in the lining are presented by Pérez 
and Auvinet (2012) for soils under drained conditions. The 
references that apply to rocks are Hoek and Marinos (2000) 
and Duncan Fama (1993). Nevertheless, it is important 
to understand the limitations of rock mass classification 
schemes (Palmstrom and Broch, 2006). Nowadays, tunnel 
design employs two (2D) and three (3D) dimensional 
software, based on numerical methods. In general these 
methods are used to study particular tunnel cases (e.g. 
Sánchez et al., 2014; Farias et al., 2004, Martínez et al., 
2015). In the same way, 3D numerical models develop 
a more realistic and efficient design than 2D models. 
However, low computer resources and design exigency 
do not make 3D one of the preferred methods for the 
construction industry. Thus, to avoid long calculations, 

there is a methodology based on the finite element method 
FEM which allows obtaining a 3D response from 2D 
FEM analyses (Vlachopoulos and Diederichs, 2014). This 
methodology was obtained from a 2D FEM numerical 
model which is established under the constitutive model 
principles of Hoek et al. (2002). Moreover, it is necessary 
to study possibilities to interpolate results from 2D to 3D 
models in soils, given that the infrastructure development 
has increased demands for the construction of large tunnels 
(Hoek, 2001). 

Considering the previous statements, this article presents 
a parametric study that allow obtaining nomographs to 
estimate 3D elastic displacements in a rapid way, for a 
circular tunnel under drained conditions. The presented 
graphs have also the importance of revealing the 3D effect 
since the 3D deformations are not the same that those 
obtained from a 2D analysis along a certain excavation 
length. It is also possible to calculate the 2D-3D relationship 
from the 3D tunnel displacements for the first meters of the 
tunnel excavation. Undrained conditions and the presence 
of groundwater table are not included in this study.

Tunnel characteristics and numerical FEM 
considerations
Tunnel geometry, dimensions and numerical characteristics 
are presented in this section, as well as the soil parameters 
and the field pressure variation used in the FEM models.

Geometry models
The considered tunnel geometry corresponds to a 
simulation of a deep tunnel, taking into account FEM 

Table 1: Tunnel radii and FEM geometries modeled, K0 = 1 (isotropic conditions)
Radii R, m 7 6 5 4 3

Dimensions Boundaries B × B × L, 
m

B × B × L, 
m

B× B × L, 
M

B × B × L, 
m

B × B × L, 
m

2D
•	Uniform mesh
•	6 node triangles

External:
zero-displ. x–y
Tunnel:
default zero-displ. –z 

140×140* 120×120* 100×100* 80×80* 60×60*

3D
•	Uniform mesh
•	10 node tetrahedron

External:
zero-displ. –x, –y, –z
Tunnel:
zero-displacement –z

140×140×1* 120×120×1* 100×100×1* 80×80×1* 60×60×1*

140×140×100 120×120×100 100×100×100 80×80×100 60×60×100

* Study for equivalent meshes
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model dimensions of width and total depth that do not affect 
numerical convergence or results. A square geometry was 
assumed as the analysis domain with B × B dimensions, 
where B = 20R as represented in Figure 1a. The depth H0 
from the ground surface to the center of the excavation in 
function of the tunnel radius R and different excavation 
lengths L until L = 100 m for the 3D-model were simulated. 
Axes convention are shown in Figure 1b. Table 1 presents 
geometries and the studied radius variation as well as the 
FEM numerical characteristics.

Numerical analysis
Numerical analysis corresponds to the stresses and strains 
generated in the soil around the tunnel using RS2 (2016) 
and RS3 (2017) as depicted in Figure 2. 3D uniform 
discretization meshes were generated using 500 elements 
for L = 1 m (see later on in equivalent mesh study section) 
and 50000 finite elements for L = 100 m. For the 2D mesh 
discretization, 1000 elements were generated for all R and 
considering uniform meshes as for the 3D simulations. 
For 3D and 2D modelling, special care was taken in the 
tunnel mesh discretization in all cases, trying to keep 
a number of equal elements in the tunnel periphery (y-x 
plane) and considering an appropriate refinement in the 
tunnel area to ensure more accurate results. External 
boundary conditions in both, 2D and 3D models are zero-
displacement in the vertical and horizontal planes (y, x and 
z axis). In the tunnel periphery only zero-displacement is 
considered in the z- axis. This last condition is automatic 
for the plane strain deformation case (see Figures 3 and 4). 
Table 1 summarizes the numerical characteristics for the 
2D and 3D simulations.

Figure 1: a) Tunnel boundary and external boundaries and b) 3D 
axes convention

Figure 2: Scheme of the tunnel showing displacement u and 
convergence considering isotropic conditions

Figure 3: 3D equivalent mesh by 100 × 100 × 1 m, R = 5 m, 500 
elements with 10 nodes tetrahedron showing a close-up on the 
top right corner 

Figure 4: 2D equivalent mesh by 100 × 100 m, R = 5 m, 2750 
elements with 6 node triangles

Tunnel radial pressures
It is important to remark that tunnel support was not 
considered in FEM simulations, however a characteristic 
curve used in practice (e.g. Lombardi and Amberg, 
1974; Panet, 1995; Alonso et al., 2003) was adopted to 
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obtain a pressure-displacement relationship and generate 
a first numerical simulation to the point in time when it 
is necessary to place the tunnel support. Variation of the 
pressure pa was defined by a Pressure Reduction Factor 
PRF (see Figure 2). PRF pressure values are showed in 
Table 2 for R = 5 m. Only this geometry was evaluated 
because with the resulting nomographs it is possible to 
obtain displacements for any PRF.

Table 2: Pressure Reduction Factor PRF for R = 5 m simulated 
in FEM under isotropic conditions

PRF 1 2 3 4 5 6

pa, kPa§ in situ 783 696 609 522 435

PRF 7 8 9 10 11 -

pa, kPa§ 348 261 174 87 0 -
§ Soil radial stress

Soil parameters
A Mohr-Coulomb model was used by considering an elastic 
behaviour for isotropic conditions. The soil friction angle 
f, cohesion c and unit weight g correspond to a typical clay 
of the city of Morelia, Mexico. In the parametric study the 
soil elastic modulus E was varied from a soft to a rigid clay 
and the Poisson’s ratio n was taken as constant. Table 3 
shows the parameter values used. 

Table 3: Soil parameters using a Mohr-Coulomb and elastic 
constitutive model

Soil g, kN/m3 f,° c, kN/m2 n E, kN/m2

Clay 17.4 22 12 0.35
24000 
15000 
5000

The ground water table was not considered in the numerical 
model. Field stresses in the FEM model were designated 
as constant and the effects due to the material weight were 
neglected to avoid unreal deformations in the numerical 
results, due to the depth of the tunnel. Therefore, field 
mean stresses are calculated as a function of g and H0.

where s is the normal stress in the x, y and z planes; g is 
the soil unit weight and H0 is the depth from the ground 
surface to the center of the excavation.

Elastic solution
Although the behaviour of the soil or rock is not always 
elastic, solutions based on this criterion are useful to 
calculate the quasi elastic displacements that occur 
immediately after excavation of a tunnel (Cording, 1968). 
In this way, the elasticity theory was used in this study to 
achieve and validate the proposed nomographs, in order 
to simplify the analysis and to compare it with traditional 
equations used in practice for tunnel design. The elasticity 
expressions for tunnels are solved through the Airy function 
(Timoshenko and Goodier, 1970). Constitutive elastic law 
and displacement tunnel equations are presented in the 
next paragraphs.

Constitutive elastic law for soil
Required elastic parameters of the soil to calculate 
deformations are used through equations (2), (3), (4) and 
(5) (Levy, 1980):

where e is the normal strain in the x, y and z planes; g is 
the shear strain in the x and y planes; E is the elastic soil 
modulus; G is the shear strain modulus; n is the Poisson’s 
ratio; and s is the normal stress. The suffixes h and v are 
used to distinguish the horizontal and vertical directions 
and x, y and z are the coordinate system used for the finite 
element software RS2 and RS3 (see Figure 1).

On the other hand, elastic analysis requires only the 
specification of the nvh and not of the nhv because the elastic 
constitutive law has the next relationship (6):

where n is the Poisson’s ratio in the vertical v and horizontal 
h planes.
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Analytical solution for the tunnel displacements
The expression by Deere et al. (1969) was used to obtain 
the analytical tunnel displacement (see Figure 2) and 
results were compared with the displacements obtained in 
RS2 and RS3.

where u is the elastic displacement in the tunnel periphery; 
g is the soil unit weight; H0 is the depth from the ground 
surface to the center of the tunnel; pa is the soil radial stress 
in the tunnel periphery; n is the Poisson’s ratio; D is the 
tunnel diameter; and E is the soil elastic modulus. In other 
way, the characteristic curve of the primary support of the 
tunnel used to define the pressure in order to place the 
support and to obtain first FEM simulations, was obtained 
with the expression by Tamez-González et al. (1997):

where pa is the soil radial stress in the tunnel periphery; Dm 
is the annular medium diameter of the support; t is the 
support thickness and Ec is the elastic modulus of concrete. 
Parameters considered for the structural primary support in 
expression (8) are stated in Table 4. The elastic radial 
tunnel displacement, before of the support placement was 
considered as uio = 0.15 m (Tamez-González et al., 1997) 
to build the characteristic curve of the primary support. 
This displacement uio depends on the pressure exerted on 
the tunnel front at the time of excavation.

Table 4: Structural parameter values for the tunnel primary 
support
Parameter Value
Support thickness t, m 0.10
Elastic modulus of the concrete Ec, MN/m2 21707.9
Annular medium diameter of the support Dm, m 9.95
Elastic radial tunnel displacement before support uio, m 0.15

Kondner principle
Kondner (1963) principle states that load-displacement 
curves can be adjusted with a hyperbola. This method was 
applied to results obtained from triaxial tests using soft 
soils (e.g. Giraldo-Sierra, 1996). In this article expressions 
(9), (10), (11) and (12) will allow displacements to be 
obtained for different length of the tunnel excavation.

Where d is the displacements in the tunnel periphery; L is 
the excavation length;  a and b are the constants from the 
hyperbole equation.

Results of analytical and numerical 
simulations
The first stage shows the results obtained with the equivalent 
meshes in 2D and 3D and subsequently they are compared 
with the analytical results. Finally, a parametric study was 
carried out to obtain the proposed nomographs for different 
excavation lengths L under isotropic conditions (K0 = 1).

Equivalent 2D and 3D FEM meshes
First of all, comparisons among numerical results were 
undertaken for the 2D and 3D meshes as indicated in Table 
1 as * Study for equivalent meshes. The purpose was to 
simulate the 3D mesh with a length L = 1 m, to reproduce 
2D conditions, to obtain meshes that gave the same results 
and then to simulate the effect of the length L of the tunnel 
excavation (Equihua-Anguiano et al., 2017). In Figure 5 
we can observe the two numerical responses in 2D and 
3D in the tunnel’s point A, represented respectively with 
filled circles and void squares. Graph’s curves present a 
linear behaviour due to the PRF variation (Table 2) and 
for the modelled elastic constitutive law. Both results 
present similar displacements. In the same way, analytical 
displacements (rhombuses) obtained from expression (7) 
were compared with the 2D and 3D displacements. The 
numerically obtained displacements match comparatively 
well with the analytical displacement.

Inverse of the initial gradient

Ultimate excavation length
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Figure 5: Numerical 2D, 3D and analytical displacements versus 
PRF at the tunnel periphery in point A showing characteristic 
curve of the primary support (R = 5 m, K0 = 1, L = 1 m)

Analogous results were also observed in the B point due 
to the isotropic condition considered in the numerical 
simulations. As a result, tunnel closure is a circumference 
with a decrease of the diameter as can be observed in 
Figures 6 and 7. Thus, these 2D and 3D meshes are 
considered equivalent according to the analytical results. 
Final 2D and 3D equivalent mesh discretization for a 
radius R = 5 m are depicted in Figures 3 and 4. Figures 
6a and 6b show the kinematic characteristics of the 
displacements and the vectors obtained in RS2 for R = 5 
m under isotropic condition for PRF = 11. This condition 
represents the maximal displacement obtained using the 
elasticity theory. In Figure 7a total displacements in 3D 
conditions are shown, which are very similar to those 
presented in 2D conditions.

Figure 6: a) 2D total displacements and b) tunnel vectors for R = 
5 m, K0 = 1 and PRF = 11

Characteristic curve of the tunnel support
As it is known, elasticity theory does not present an evident 
failure for a material response. Therefore, it is important 
to choose a starting point, where it is possible to define a 

displacement for the design. In accordance with results of 
the equivalent meshes, Figure 5 presents the characteristic 
curve obtained with expression (8) for the primary support 
(continuous line). This allowed to choose the PRF for the 
3D numerical modelling for the excavation length L = 100 
m. Therefore, the corresponding pressure value was taken 
for PRF = 6 (Table 2), since this presents the intersection 
among soil displacement and the characteristic support 
curve. 

Displacement nomograph in isotropic conditions
3D numerical simulations using L = 100 m for five R were 
performed under isotropic conditions (K0 = 1) as can be 
seen in Figure 8, and using PRF = 6 as described before. 
A sequence of excavation of every meter was simulated 
up to the total length L. Elastic modulus E was varied 
according to Table 3 for all radii modelled. Maximal 
elastic soil modulus considered was Emax = 24000 kN/m2, 
that corresponds to a rigid clay and Emin = 5000 kN/m2 for 
a soft clay. Figure 9 presents the total length excavation 
L versus total displacement d developed in the tunnel’s 
A point for R = 5 m in isotropic conditions and for three 
elastic modulus E in 2D and 3D conditions. It is clear to 
note that displacements are larger for a minor E value than 
for a higher E value. From approximately L = 12 m similar 
displacement were developed for 3D and 2D simulations, 
where it is possible to observe an inflexion point in which 
for the larger E displacements stabilized before than 
for the lower E. Furthermore, it can be appreciated that 
this similar displacement is the maximum displacement 
developed in the tunnel periphery. Then, 2D simulations 
over estimate the displacements developed in the first 
meters of the excavation when compared with 3D results 

Figure 7: a) 3D total displacements and b) tunnel vectors for R = 
5 m, K0 = 1 and PRF = 11
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shown in the same figure. This result is very important 
since support design generally is performed in function of 
the 2D displacements or applying the elasticity theory and 
therefore the support is over designed by not taking into 
account the influence of the 3D excavation length L. 

Figure 8: a) 3D-FEM simulation and b) mesh for L = 100 m, R = 
5 m, K0 = 1 and PRF = 6

Figure 9: Excavation length L versus 3D total displacement d at 
the tunnel’s A point for R = 5 m, PRF = 6 and K0 = 1

Figure 10 presents the 3D and 2D total displacement d	
from Figure 9’s curves, but normalized respect to R, E and 
Emax for R = 5 m, and PRF = 6 in isotropic conditions (K0 

= 1). Note that the three 3D responses as well as the two 
2D numerical results match perfectly. From this figure 
it is possible to conclude that whichever the value of 
elastic modulus E the same curve will be obtained when 
d and E are normalized by R and Emax, respectively. In the 
same way, the displacement inflection point concur with 
the same position independently of E. This step allowed 
obtaining the nomograph for different tunnel radii, which 
is presented in Figure 11 from the consideration that any E 
shows the same behaviour for a given radius R.

Figure 10: Excavation length L versus total displacements d	
normalized by R, E and Emax, at the tunnel’s A point, R = 5 m, 
PRF = 6, K0 = 1

Figure 11: Nomograph to obtain 2D and 3D displacements in for 
elastic and isotropic conditions

Figure 12: Normalized 3D excavation length versus 
displacements for the isotropic conditions
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Figure 11 presents the nomograph calculated from the 
parametric study. This graphic allows obtaining 3D and 
2D displacements d in the tunnel periphery without the 
need to carry out a 3D-FEM analysis. Displacements can 
be obtained considering different lengths of excavation L 
and for any combination of pa, E, H0, g and for different 
tunnel radii (R = 3, 4, 5, 6 and 7 m), based on the elasticity 
theory and considering isotropy. In this figure it can be seen 
that for a wide radius R displacements are larger than for 
undersized tunnels. The inflexion point observed for the 
R = 5 m (Figures 9 and 10), is also presented for different 
radii R. Lengths L in which displacements are the same in 
2D and 3D dimensions are different and depends on the 
radius R considered, for example, for R = 7 m the length 
L2D-3D = 25 m and for the R = 3 m, L2D-3D = 10 m. In this 
way, Figure 12 shows normalized curves corresponding to 
the five 3D responses presented in the nomograph. Results 
show punctual differences in the inflection slope zone, 
observing that for R = 7, 6 and 5 m, a similar behaviour 
manifests itself and for smaller R a different trend in the 
slope change is found. 

3D and 2D displacements relationship
In concordance with previous results and in order to obtain 
a relationship between 3D and 2D displacements d with 
L along the excavation since displacements have a 3D 
effect around the tunnel periphery, the nomograph was 
normalized by Rmax/R. Figure 13 shows the normalization 
results where it can be observed as in Figure 12 that the 
same trends are found for R = 5, 6 and 7 m; and for R = 3 
and 4 m the slope is more pronounced than for the other 
analysed radii. In this way, Kondner (1963)’s expression 
was used for fitting the obtained normalized curves. 
Figures 14, 15a and 15b submit the obtained fitting curves. 
In the cases of R = 5, 6 and 7 m the same expressions (13) 
and (14) are applicable to obtain the displacements in the 
first L = 18 m, in which 3D simulation has an effect on the 
3D results, respect to the 2D simulations. The expression 
to obtain displacements d in tunnels with R = 5 to 7 m and 
for L from 1 m until 18 m is:

where L is the excavation length in m, and y is obtained 
from (14):

 

where d is the displacement in the tunnel periphery; g is the 
soil unit weight; H0 is the depth from the ground surface to 
the centre of the tunnel; pa is the soil radial stress in the 
tunnel periphery; n is the Poisson’s ratio; Rmax = 7 m, R is 
the tunnel radius; Emax = 24000 kPa; and E is the soil elastic 
modulus. In the same way, adjustments were done for the 
R = 4 and 3 m respectively, displacements for each case 
can be obtained from (15) and (16). The expressions to 
obtain the displacement d in tunnels with R = 4 and 3 m 
until L = 15 m are:

The previous expressions allow the calculation of elastic 
3D displacements in the first meters of the excavation 
which has an important influence respect to 2D 
displacements. In the case of lengths in which 2D and 
3D-FEM displacements are the same, expressions to 
calculate are the same taking into account the maximal L 
considered in the expressions (13), (15) and (16).

Figure 13: Normalized displacement nomograph respect to the 
Rmax/R versus length excavation L

Conclusions
Tunnels are facilities of great importance that require the 
development of tools that improve and make their design 
more efficient in practice. In this article, an analysis using 
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FEM was carried out using Rocscience programs RS2 and 
RS3. In this paper we have presented equivalent FEM 
meshes from 2D to 3D for a deep circular tunnel in clay 
under elastic and isotropic conditions. A good agreement 
between 2D and 3D results in terms of displacements was 
obtained as well as with the analytical solution provided 
by the theory of elasticity. Besides, 3D-FEM results of 
the tunnel show that displacements are smaller than in 
2D-FEM analyses for the initial length of the excavation. 
From this excavation advance, the displacements achieve 
their maximum value and remain constant regardless of 
the increase in the length of the excavation. This result is 
very important since support design generally is performed 
in function of 2D displacements or applying the elasticity 
theory and therefore the support is over designed by not 
taking into account the influence of the 3D excavation 
length L.

The nomographs obtained from RS2 and RS3 as well as 
relationships that allow the calculation of elastic 3D and 2D 
displacements were presented. The proposed nomographs 
give 3D displacements in elastic and isotropic conditions 
for different pressures acting in the tunnel periphery and 
considering different soil parameter values such as the unit 
weight g, elastic modulus E and in situ stresses depending 
on the depth of the tunnel H0. The nomographs presented 
allow 3D displacements to be obtained without the need 
to carry out a 3D-FEM analysis. Displacements can be 
obtained for different excavation lengths L and also for 
any pressure PRF applied into the tunnel. Different values 
for g, H0, PRF, and E can be applied. Finally, results from 
ongoing numerical research on tunnel response considering 
plasticity analysis including groundwater and anisotropic 
conditions will allow comparisons with the elastic results 
presented in this study.
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