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This article presents a numerical study on the shear force 
demands suffered by columns of reinforced concrete (RC) 
frames subjected to seismic actions. The paper examines 
well established capacity-based design procedures which 
account for dynamic amplification effects via the dynamic 
magnification factor ων, which multiplies the static shear 
demands resulting from the development of the beam 
flexural strengths. It also reviews the prescriptions of 
the New Zealand Standard NZS3101, which requires 
ων = 1.3 for columns of intermediate storeys. Using the 
results of nonlinear dynamic analyses (NLDA) of a model 
representing one of the main directions of a 12-storey 
building structured with RC walls and special moment 
resisting frames designed per NCh433 and ACI318, the 
paper shows the calculated values of ων for different 
column types and storey level, as subjected to a set of 13 
earthquake records. The results show that 1.0 < ων < 1.3 
in the great majority of the cases, suggesting that the limit 
ων = 1.3 would be appropriate in this particular case. 
However, it cannot be considered a conservative upper 
bound in a conclusive way, because values as large as 1.6 
were predicted in some of the cases. Acknowledging that no 
dynamic amplification effects are included in the calculation 
of the capacity-based shear demands for columns of frames 
according to ACI318 (current 2019 edition), it is proposed 
that the recommendation of NZS3101 (2006), which cover 
such effects, are included in the upcoming edition of the 
Chilean Standard NCh430.

Keywords: reinforced concrete (RC), seismic shear 
demands, columns, dynamic amplification

Este artículo presenta un estudio numérico sobre las 
demandas de corte sufridas por columnas de marcos de 
hormigón armado sujetas a acciones sísmicas. El trabajo 
examina procedimientos bien establecidos de diseño al 
corte por capacidad que incluyen efectos de amplificación 
dinámica mediante el factor ων que multiplica la fuerza 
de corte estática asociada al desarrollo de la resistencia 
en flexión de las vigas. También revisa los requisitos 
de la norma neozelandesa NZS3101 que requiere usar 
ων = 1.3 para columnas de pisos intermedios. Usando 
los resultados de análisis dinámicos no-lineales de un 
modelo que representa una de las direcciones principales 
de un edificio de 12 pisos estructurado con muros y 
marcos de hormigón armado diseñados según NCh433 
y ACI318, el artículo muestra los valores calculados de 
ων para distintos tipos de columnas y pisos, cuando es 
sometido a un set de 13 registros sísmicos. Los resultados 
indicaron que 1.0 < ων < 1.3 en la gran mayoría 
de los casos, sugiriendo que el límite ων = 1.3 sería 
apropiado en este caso. Sin embargo, este valor no puede 
considerarse una cota superior dado que en algunos 
casos se obtuvo valores de hasta 1.6. Reconociendo que 
el efecto de amplificación dinámica no se incluye en el 
cálculo de la demanda de corte por capacidad estipulada 
por ACI318 (incluyendo su edición 2019), se propone que 
se consideren los requisitos de la norma neozelandesa 
NZS3101 para ser incluidos en los requerimientos de la 
norma chilena NCh430.

Palabras clave: hormigón armado, demandas sísmicas 
de corte, columnas, amplificación dinámica

Introduction
Seismically induced shear demands expected for reinforced 
concrete (RC) structural members have been broadly 
studied in the past. Amongst research involving such topic, 
the work done at the University of Canterbury, synthesized 

in Paulay and Priestley (1992), sets up a paramount 
milestone when formally defining capacity-based seismic 
design for RC walls and frames. The virtue of this design 
philosophy is the seeking for independence from the 
seismic demand, when acknowledging the complexity of 



88

Quintana, P. (2019).  26, 87-99

the earthquake phenomenon (Paulay, 1983).

This nowadays well-known design philosophy was firstly 
incorporated in the New Zealand RC design standard 
NZS3101 (1995). In particular, the capacity design 
principles and formulations for shear are provided for wall, 
frame, and wall-frame buildings. Such principles include 
considerations on the hierarchy of the strengths within 
the system to impose a desired inelastic mechanism and 
failure mode. Static equilibrium of the internal forces and 
moments, resulting from deflections which impose such 
mechanism, are used for relating the flexural capacity of 
critical sections of walls or beams and columns to the shear 
force demand in walls, columns, beams, and beam-column 
joints, as corresponds. Further, the shear demands obtained 
with consideration on statics, are amplified to account for 
dynamic effects (see e.g. Goodsir et al., 1983 and Quintana 
Gallo 2008, 2018).

The code ACI318 (1995) on the other hand, had 
traditionally not used this method, except for frames, in a 
simplified version, included from the 1995 edition onward. 
For structural walls, the ACI318 code included a smaller 
reduction factor for shear resistance under seismic actions 
of 0.6 (instead of the normal 0.85), but the required seismic 
shear Vu

 was still obtained with a code-prescribed elastic 
analysis. The ACI318 (2019) version, however, requires 
the use of a capacity-based design for shear, adopting 
what is stipulated in the New Zealand standard NZS3101 
(2006), with minor modifications, such as: (1) the use of a 
minimum over-strength factor Ω

0
 = Mpr/Mu = 1.5; and (2) 

a limit of 3Vu for the shear obtained with the procedure. 
The dynamic amplification factor ωv is included using 
the same expression of Paulay and Priestley (1992) and 
NZS3101, i.e. as a function of the number of stories n and 
with a maximum value of 1.8. This constitutes an evident 
improvement in the rationality of the procedure used for 
estimating the shear demands on walls, which affects 
Chile, as the code prescriptions of ACI318 have been 
traditionally adopted for the design of RC structures in 
such country, with minor supposedly well-backgrounded 
exceptions and alternative procedures stated in the Chilean 
RC code NCh430 (2008).

For frames, in turn, ACI318 (2019) does not include 
new features, besides a more rational explanation of the 
calculations involved in the design of beam-column joints. 

This is, the part of the original and NZS3101 formulations 
related to dynamic amplification effects that is still not 
adopted. Dynamic amplification affects two aspects of the 
design of a frame: (1) securing of the strong column-weak 
beam principle in beam column joints (desired hierarchy 
of strengths); and (2) the calculation of the shear forces in 
columns.

To investigate if the amplification of the shear forces 
of special moment resisting frames, part of wall-frame 
buildings in particular, this work presents the results of 
a series of non-linear dynamic analyses (NLDA) of a 
12-storey ideal building structured with T-shaped walls and 
special moment resisting frames, designed per the Chilean 
seismic code NCh433 (1996) and ACI318 (2005), part of 
the work presented in Quintana Gallo (2008). The results 
of the NLDA, obtained for several earthquake records, 
show how the shear demand obtained with purely static 
capacity-design considerations is exceeded in most of the 
cases. The results also show that the dynamic amplification 
factor required by NZS3101 seems appropriate, but not in 
all of the cases.

Static capacity-based shear demand
Columns of intermediate storeys
The shear demands in the top and bottom columns of 
intermediate storeys (i.e. not the first and top levels) are 
related to the shear demands in the beams framing into 
the columns by static equilibrium considerations. Figure 1 
presents the free-body equilibrium diagram of an interior 
beam-column joint, drawn to match the inflexion points 
of beams and columns under equivalent lateral forces 
(denoted with the subscript “E”), such that  ,  ,  , and  

 correspond to the distance from the point of contraflexure 
at the top and bottom columns, and left and right-hand side 
beams, to the intersection of the centrelines, respectively. 
With reference in Figure 1, by equilibrium of horizontal 
and vertical forces:

where  and  are the shear forces at the top and 
bottom columns, respectively (both equal to VE,c, since 
differences in the axial load of the beams are neglected), 
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 and  are the shear forces at the left and right-hand 
side beams, respectively. The term ∆N

E,c
 is the axial load 

variation in the column, and corresponds to the difference 
between the shear in the beams at both sides of the column. 
Note that the axial load in the top column, , is assumed 
not to change due to gravity effects introduced at the floor 
level due to the weight of the slab or others.

Figure 1: Free-body equilibrium in an interior beam-column 
joint

As in general  ≠ , the top/column moments at the 
intersection with the beams (measured at the centrelines), 

  and  , are not necessarily identical. In fact,  =   
occurs only when  = , because as  = , /l

i,c
B 

= /   must be respected. By equilibrium of moments 
relative to the centre of the joint, equation (3) is obtained:

Additionally, it holds that  =  and   = , 
which replaced in (3) leads to (4):

Equation (4) relates the shear in the columns as a function 
of the moments in the beams and the inflexion-point 
lengths, measured at the centreline of the column. To refer 
the beam moments to the faces of the column (with cross-
section height hc), it is recalled that the slope of the moment 
diagram along the beams corresponds to the shear force, 
such that:

                                                                                                

In equations (5) and (6) the f in the superscript refers to 
‘face’ (of the column). Using these expressions instead of 

 and  in (4) leads to equation (7):

The calculation of VE,c
 with (7) requires knowledge of the 

shear in the beams, which in turn depends on the moments 
at the other beam ends. To examine the magnitude of this 
term, it is assumed that the moments at such ends are 
equal to the moments at the opposite face of the columns 
under investigation, and that the beam spans are identical 
and equal to lb (measured to the centrelines). Under this 
assumptions, it holds that  and 

. Replacing these expression in (7) yields:

                                            

The term hc/lb is normally small as the elements of a frame 
are slender by definition, but can be of relevance for short 
deep beams. In any case, neglecting such term is on the 
conservative side, and is dropped in the calculation of the 
shear force demands in the column. This is, (4) is preferred 
over (8). After the flexural capacity of the beams (including 
overstrength) has developed, the moments in the beams 
are known and are related to the moment required by the 
analysis according to (9) and (10):

                                               

where  and  are the flexural overstrength factors of 
the left and right-side beams, respectively. Note that these 
two values are not necessarily the same, as the overstrength 
factor is normally larger for negative than for positive 
moments, mostly due to the effect of the reinforcing steel 
of the floor slab. Replacing (9) and (10) into (4) leads to 
(11):
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The shear in the column at beam flexural overstrength can 
be directly calculated using (12), which is analogous to (4).

                                                 

To relate the elastic shear VE,c to Vo,c, the overstrength 
factor Ω

0,c
 is introduced, as defined in (13).

Combining equations (12) and (13), Ω
0,c

 can be expressed 
as in (14):

                                   

Further, replacing (9) and (10) into (14) leads to (15):

                                         

NZS3101 (2006) allows using Ω
0,c

 equal to the mean 
average of the beam overstrength factors, , such that: 

                                        

Substituting (15) into (16) to impose such assumption, and 
using (9) and (10), leads to (17):

Equation (17) can be reduced to (18):

                                                

Hence, the assumption of NZS3101 (2006) stated in (16) 
is compatible with (15) only when the elastic moments 
required in the beams are identical. However, if such 
moments are different to each other,  can be smaller 

than Ω
0,c

 calculated per (17), depending on the ratio /
. Referring the beam elastic moments and overstrength 

factors to the reference parameters M
E,b

 and Ω
0,b

, such that  
 (with α > 1 

and β >1), equation (15) can be written as (19):

The parameter  in (16), on the other hand, is re-written 
as in (20):

                                      

Dividing (19) into (20) to calculate the ratio g = Ω
0,b

/ 
and evaluate how unconservative (16) can be, equation 
(21) is obtained.

                                     

Numerical inspection of (21) leads to g = 1.11 for α = 2 
and β = 2, and g = 1.20 for α = 2 and β = 4. Thus, using the 
recommendation of NZS3101 (2006) will provide a slightly 
smaller column overstrength factor than that obtained with 
(15) or (19) for normal cases, but might be unconservative 
for exceptional cases. Hence, it is recommended that the 
latter equations be directly used in the calculations.

Finally, for the particular case where , (15) 
reduces to (22):

                                       

If, additionally, , implying that   = 
= Ω

0,b
, equation (23) is obtained, which corresponds to the 

generic case presented in Paulay and Priestley (1992).

                                     

For the general case, combining (12) with (15) leads to 
(24):
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It is shown that for the calculation of Vo,c per (24), in 
addition to the beam flexural capacities, the elastic shear 
and moment demands obtained with the analysis (VE,c, 

) are needed. On the other hand, (12) implies 
knowledge of  and . Noting both equations are 
equivalent while (24) can be readily used in practice, for 
the scope of this work (12) is preferred because the location 
of the points of contra-flexure in the columns are used for 
including the dynamic effects as explained in the next 
section. The reference static capacity-based shear demand, 
Vo,c, is defined for the case where the points of contra-
flexure are located at the mid-length of the columns, such 
that   = /2 and  = /2, where  and  are the length 
of the bottom and top columns measured to the centrelines 
of the beams. Replacing these terms into (12) leads to (25):

                                      

For the particular case where  = h
s
, with h

s
 the typical 

storey height, (25) becomes (26):

A reduced value of  and/or  from the reference value 
defined above implies an increase in the shear demand. 
This effect is accounted for via the estimation of the 
maximum dynamic amplification of the elastic moments 
in the columns as explained later on the paper.

Columns of the first storey
For columns of the first level, the capacity-based shear 
required by NZS3101 (2006) is conservatively taken 
as if the column would develop its flexural overstrength 
at both ends, and further amplified by a factor of 1.15, 
acknowledging the catastrophic consequences of shear 
failure in the columns of the first storey. The required shear 
force for such columns is presented in (27):

                                   

where Ln is the clear height of the column, and  and 

 are calculated with the axial load consistent with the 
inelastic mechanism (i.e. static loads plus the shear forces 
developed in the beams of all the storeys, see Figure 1). No 
dynamic amplification factors are required for this case.

Sources of overstrength
According to ACI318 (2019), the resisting moments of the 
beams at overstrength should be taken as the (maximum) 
‘probable’ moments  and , and as the nominal 
moments  and  for intermediate 
frames. The probable moments are calculated with a 
yielding stress of the steel amplified by 1.25 times. Even 
though it is not totally clear what is the criteria for such 
increase, the fundamentals of capacity-based formulations 
claim for overstrength due to: (1) the inherent increase in 
the actual value of fy compared to the specified nominal 
(characteristic) value, occurring at εy axial deformation 
levels (0.2% for Grade 60 steel); and (2) and increase in 
the resisting stress of the reinforcing steel due to strain 
hardening effects, normally occurring at approximately 1% 
axial deformation (Park, 1996). According to Park (1996) 
and Andriono and Park (1986), for New Zealand steel, an 
increase of 17% should be expected for the real/nominal 
yielding stress effect, and of 8% due to strain hardening, 
summing up the 25% increase stipulated by ACI318. This 
effect is also included in NZS3101 (2006), section 2.6.5.5, 
but in a slightly different way which requires multiplying 
the nominal strength directly by f0 = 1.25. Given the nature 
of the main source for overstrength of fy, which occurs 
at small deformations, it could be argued that this effect 
should also be accounted for in intermediate frames of 
ACI318, if the justification of using Mn instead of Mpr is the 
smaller deformations they would suffer. Thus, is proposed 
that a factor in the order of 1.17 is used for intermediate 
frames, or a value for a specific reinforcing steel type, 
following procedures such as those used in Andriono and 
Park (1986).

Dynamic magnification of static shear
Non-linear dynamic analyses of wall-frame and frame-
only structures have showed that the static capacity-
based shear force calculated with (12) is amplified due to 
dynamic effects (Paulay, 1983; Goodsir et al., 1983; Paulay 
and Goodsir, 1986; Paulay and Priestley, 1992; Paulay, 
1996; Priestley et al., 2007). This amplification is related 
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to the dynamic magnification of the flexural moments in 
the column due to the effect of higher modes of vibration. 
Recalling that column-hinging is to be avoided above the 
ground level, the elastic moments developed at the ends 
of a column must firstly be multiplied by the overstrength 
factor Ω

0,c
. This is, the top and bottom column moments at 

flexural over-strength of the beams are given by equations 
(28) and (29), respectively.

                                        

Due to dynamic effects, such moments should be 
multiplied by the dynamic amplification factor ωf  (Paulay 
and Priestley, 1992; Priestley et al., 2007), such that the 
capacity-based column moments are obtained with (30) 
and (31). 

                                          

As the shear in the top and bottom columns is the same, if 
, it also holds that  and  = 

= M
E,c

, which leads to the generic form of (32):

                             

Note that the original expression for Mcap,c proposed in 
Paulay and Priestley (1992) includes the factor Ω

0,c
= Ω

0,b
, 

appropriate for the generic symmetrical case.

Figure 2 presents the moment diagram of an isolated 
column of intermediate storeys consistent with: (1) the 
development of the overstrength moments in the beams of 
both sides and both ends of the column; and (2) same as (1), 
but including moment amplification due to dynamic effects 
at the top of the column only. The first case corresponds 
to the maximum static shear (reference capacity-based 
shear demand) and the second is related to the moment 
magnification factor ωf  as explained in the following. In 
Figure 2(a), the superscripts n and n + 1 in the columns 
and beam forces and moments refer to the storey n and n 
+ 1, respectively. The bending moment diagrams of Figure 
2(b) are referred to the centrelines of the columns, but they 
can easily be referred to the beam faces. The inflexion 
points are identified by  for the reference case, and by  

 = /ω
ν
 for the case including dynamic magnification 

of , with ω
ν
 > 1, the dynamic magnification factor for 

shear. To obtain an expression for ω
ν
 as a fuction of ω

f 
, 

the reduced location of the point of contraflexure is related 

Figure 2: Dynamic amplification of shear in columns: a) equilibrium in an isolated column, b) bending moment diagrams at 
overstrength and dynamic amplification and c) bending moment diagram used for deriving ω

ν
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to the static reference counterpart  =  (column mid-
length), implying that  and  = 
Ω

0,c
, as shown in Figure 2(c).

With reference in Figure 2(c), the shear in the column 
(slope of the bending moment diagram) corresponding to 
the amplified case is:

                                  

The location of the associated point of contraflexure  is 
given by (34):

                                        

By definition,  = ( )/ω
ν
, which replaced in the left 

hand side of (34) leads to:

(35)
                                        

Equation (35) relates the shear amplification factor ω
ν
 

and the moment magnification ω
f
 for the particular case 

illustrated in Figure 2(c). The minimum and maximum 
values for ω

f  
proposed by Paulay and Priestley (1992) and 

adopted in NZS3101 (2006) are ωmin = 1.3 and ωmax = 1.8, 
respectively, under unidirectional loading (if bi-directional 
effects are included these values are larger). Replacing 
the maximum value ω

f
 = 1.8 in (35) leads to ω

ν
 = 1.4. 

On the other hand, if ωmax = 1.3 is used, then ω
ν
 = 1.15. 

Taking the average of both values, leads to ων = 1.275 ≈ 
1.3, the dynamic amplification recommended by Paulay 
and Priestley (1992) and stipulated in the code NZS3101. 
Note that the value ων = 1.15 corresponds to the additional 
factor used for amplifying the shear in the columns of 
the first storey (see equation (27)), even though it is not 
explicitly mentioned in NZS3101, and may be considered 
a coincidence.

To obtain a general expression for the capacity-based 
shear demands including dynamic effects, with reference 
to Figure 1, the shear associated to the reduced inflection 
point lengths  and , Vcap,c, is expressed as in (36), 
which is analogous to (12):

                                         

Herein, it is considered that the reference locations of the 
points of contraflexure in the columns above and below 
joint are both affected by dynamic amplifications, such that 

 = /ω
ν
 and  = /ω

ν
. Replacing these expressions in 

(36) leads to (37):

                                 

Dividing (37) by (12) yields (38), the capacity-based shear 
demand in the column accounting for dynamic effects.

Finally, combining (38) and (13) leads to:

                                           

Equation (39) has the form of the equation proposed by 
Paulay and Priestley (1992) and adopted by NZS3101, but 
uses Ω

0,c
 instead of   and ω

ν
 can be different to 1.3.

Case study definition and calculated shear 
demands in columns
Prototype structure description
The prototype structure used in this work (Figure 3) 
comprises of an ideal 12-storey RC building, 45.15 m high 
(first level 5 m, all others 3.65 m), and with a rectangular 
plan layout extending 55.3 m (7 bays at 7.9 m) and 20.1 
m (3 bays at 6.7 m) in the long and short dimension, 
respectively. The seismic and gravity load resisting system 
comprises of four cantilever T-shaped walls and frames 
located in the perimeter and the central part of the structure, 
as shown in Figure 3(a). The floor system consisted of 200 
mm slabs. The structure was designed following the codes 
NCh433 (1996) and ACI318 (2005). 

The walls were 500 mm and 300 mm thick in the short and 
long directions, respectively, which correspond to the web 
and the flange of the T-shaped cross-section, respectively. 
The columns had a square cross-section of 550x550 mm 
(except for the first storey central columns with 650x650 
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mm), whereas the beams had a rectangular cross-section 
of 600x250 mm. It was assumed that the concrete had a 
characteristic compressive strength of fc’ = 30 MPa, and 
the reinforcing steel had yielding and ultimate stresses of 
fy = 420 MPa and fu = 630 MPa, respectively. The structure 
was analysed in the short direction, and further idealized, 
making use of symmetry, as that presented in Figure 3(b).

Calculated shear demands for columns
Table 1 presents the reference shear demands for four 
column types (CT1 to CT4). Columns type CT1 and CT2 
correspond to exterior and interior columns of the external 
frame (Frame 1), respectively, whereas columns type CT3 
and CT4 correspond to the exterior and interior columns 
of the internal frame (Frame 2), respectively. For the scope 
of this investigation, the reference shear Vo,c is calculated 
with the nominal moment capacities of the beams, 
acknowledging that this was the value used as input for 
the numerical model, as the main source for overstrength 
is associated to variations in the yielding stress used in the 
derivation of the beam flexural resistances, which can be 
included separately. Strain hardening effects are accounted 
for with the inclusion of a post-yielding stiffness. Table 1 
summarizes the nominal moments of the beams (type 2A 
and 2B for Frame 1 and Frame 2, respectively), and the 
associated values of Vo,c per equation (12). 

For the sake of comparison, the shear demand calculated 

referring the nominal moments of the beams to the faces of 
the column is also considered, which is equivalent to not 
neglecting the resisting contribution of the shear forces in 
the beams as in (8). This second reference shear,  , is 
calculated with (40). 

Table 1: Reference static capacity-based shear demand

Column
type

Beam 
type

,

kNm

,

kNm

,

kN

, 

kN

CT1 2A 320 - 88 81

CT2 2A 320 175 136 125

CT3 2B 440 - 120 110

CT4 2B 440 250 189 174

                           

The shear obtained with (40) is smaller than obtained with 
(12). In the case of the example under investigation, h

c
 = 

0.55 m and l
b
 = 6.7 m, implying a reduction factor of V

o,c 

equal to (1-h
c
/l

b
) = 0.92.

Numerical modelling and procedure
A finite element model constructed with lumped inelasticity 
macro-elements in Ruaumoko2D (Carr, 2016) was used for 
the NLDA. The SINA hysteresis model (Saiidi and Sozen, 
1979) was used for the T-shaped walls, as it allows for 
different stiffness and strength depending on the direction 
of movement, and includes pinching effects. The modified 
Takeda model (Saidii and Sozen, 1979) was used for 
beams and column elements. The unloading and reloading 
parameters for the hysteresis of the frame members were 
set to α = 0.2 and β = 0.3, respectively, representing 
intermediate unloading and reloading stiffness degradation 
conditions; see Quintana Gallo (2008) for further details.

A set of 13 earthquake records, listed in Table 2, was used 
for the analyses. Such records do not respond to any scaling 
in amplitude or frequency, and are intended to represent 
different possible scenarios that the structure could be 
subjected to. The strong ground motions were recorded in 
different parts of the world, but mostly in Chile and New 
Zealand. The raw data of the records was corrected following 
the recommendations of Boore and Bommer (2005). Table 
2 also presents the peak ground acceleration PGA and 

Figure 3: Prototype structure: (a) plan layout; (b) short dimension 
model simplification



Quintana, P. (2019). Seismic shear demands in columns of RC frames accounting for dynamic amplifica-
tion effects.  26, 87-99

95

velocity PGV, the significant duration Ds (Trifunac and 
Brady, 1975), and the Arias Intensity AI of the earthquake 
records. The significant duration is taken from 5 to 95% 
of AI. Additional information on the characteristics of the 
input motions and associated earthquake events can be 
found in Quintana Gallo (2008, 2014).

Table 2: Earthquake records information

ID Earthquake Station Comp.
PGA,

g
PGV,
m/s

D
s
, 

s
AI,
 m/s

EQ1 Littleton 2011
New Zealand

Christchurch 
Botanic

Gardens (CBGS)
H1 0.53 0.63 9.7 2.7

EQ2 Littleton 2011
New Zealand

Christchurch City 
Council (CCCC)

H1 0.36 0.66 10.6 2.4

EQ3 Littleton 2011
New Zealand

Christchurch 
Hospital 
(CHHC)

H2 0.71 0.87 9.0 3.6

EQ4 Littleton 2011
New Zealand

Christchurch 
Resthaven 
(REHS)

H1 0.48 0.71 11.3 2.7

EQ5 Maule 2010
Chile

Concepción Centro 
(CCC)

NS 0.47 0.66 57.8 10.6

EQ6 Maule 2010 
Chile

San Pedro (SNP) X 0.59 0.47 73.8 14.3

EQ7 Maule 2010 
Chile

Viña del Mar 
Marga Marga 

(VMM)
EW 0.35 0.45 32.2 4.3

EQ8 Maule 2010 
Chile

Concepción Centro 
(CCC)

EW 0.37 0.57 60.1 6.0

EQ9 Kobe 1995 
Japan

Japan 
Meteorological 
Center (JMA)

N00E 0.81 0.82 8.4 8.4

EQ10
Northridge 

1994
USA

Sylmar - County 
hospital 

parking (SYL)
N00E 0.84 1.29 5.3 5.0

EQ11
Michoacán 

1985
Mexico

Secretaria de 
Comunicaciones 

y Transportes 
(SCT)

EW 0.18 0.62 27.0 2.3

EQ12
Valparaiso 

1985
Chile

Llolleo (LLO) N10E 0.70 0.35 35.8 15.2

EQ13
Valparaíso 

1985 
Chile

Viña del Mar 
Marga Marga 

(VMM)
NS 0.34 0.32 45.0 5.5

Figure 4 presents the acceleration (SA) and displacement 
(SD) response spectra of the 13 earthquake records for a 
damping ratio of 5%. As a reference, the figure also shows 
the elastic design spectra prescribed by NCh433, updated 
per DS61 (2011), and NZS1170.5 (2004). Such spectra are 
not reduced by the reduction factors R* and kμ required by 
the former and latter standards, respectively. Both design 
spectra were constructed for a PGA (A

0
 in NCh433 and 

Z in NZS1170.5) of 0.4g, and for soft soil type D (both 

standards). The importance factor I of NCh433, as well as 
the near fault-factor N(T, D) of NZ1170.5 were taken as 1.0.

Additionally, Figure 4 presents the spectra associated to 
a maximum credible earthquake (MSE) hazard scenario 
prescribed by NZS1170.5 (2006), associated to a probability 
of exceedance of 2% in 50 years instead of 10% in 50 years 
as the design counterpart, as specified in AS/NZS1170.0 
(2002). Such difference between both spectra is included 
via the factor Ru, which is 1.0 and 1.8 for design and MCE 
scenarios, respectively.

Figure 4: Response spectra of earthquake records and design 
spectra of NCh433 and NZS1170.5: a) acceleration and b) 
displacement

Additionally, Figure 4 presents the spectra associated to 
a maximum credible earthquake (MSE) hazard scenario 
prescribed by NZS1170.5 (2006), associated to a probability 
of exceedance of 2% in 50 years instead of 10% in 50 years 
as the design counterpart, as specified in AS/NZS1170.0 
(2002). Such difference between both spectra is included 
via the factor Ru, which is 1.0 and 1.8 for design and MCE 
scenarios, respectively.
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Results and discussion
The graphs of Figure 5 show the values of the dynamic 
amplification factor ων referred to V

o,c
, i.e. calculated with 

(12), obtained with the set of 13 NLDA. Such values are 
presented for each column type (CT1 to CT4) and storey 
level of all the intermediate storeys (#2 to #11). In general, 
the magnitude of ων appears to depend on the input 
motion, but not to a great extent in some of the cases, such 
as for column CT1 storey #9. There is not a substantial 
difference between the results obtained for the four column 
cases. Figure 5 shows that ων was larger than 1.0 for most 
of the records, column types, and storey levels, with the 
exception of storeys #1 and #11. On the other hand, ων was 
smaller than 1.3 (the threshold required by NZS3101) in 
the great majority of the cases. However, there are a few 
cases where this value is exceeded, such that ων reaches 
values as large as 1.6 (CT1, storey #6).

Figure 5: Dynamic amplification factors of shear demands, 
reference: Vo,c, for column types CT1 to CT4

The graphs of Figure 6 present the dynamic amplification 
factor calculated with reference to    determined with (40), 
referred to as . These graphs depict the corresponding 
magnitude of the dynamic amplification when referred to 
the less conservative calculation of the static capacity-based 
shear demands. Under this conditions, it holds that  > 1.0 
and   > 1.3 in a larger number of cases compared to ω

ν
.

To better visualize the dependence of ων on a ground 
motion intensity parameter, the values of ων obtained for 
CT1 plotted against the PGA of the input motion, for each 
storey level, are presented in Figure 7. The results reflect 
no apparent correlation between both parameters. For 
storey #10, for example, ω

ν
 takes approximately the same 

value (1.15) independently of the PGA of the input motion, 
ranging from 0.17g to 0.8g. In fact, this is true for most of 
the storeys levels. Further studies on the dependence of  ω

ν
 

on other typically used intensity measures are not pursued 
and are considered out of the scope of this study. Instead, 
focus is placed on the evaluation ω

ν
 = 1.3 as a conservative 

limit independent of the input motion.
 

Figure 6: Dynamic amplification factors of shear demands, 
reference: 

Figure 7: Dynamic amplification factor ω
v
 versus PGA of input 

motion

Table 3 presents the percentage of the total cases where 
ω

ν
 and  exceed 1.0 and 1.3, denoted by P1.0, P1.3, and 
 and , respectively, for columns CT1 and CT2. 

Table 3 shows that ω
ν
 exceeded 1.0 in the great majority 

of the cases for storeys #3 to #10 (73% of cases or more), 
whereas for storeys #2 and #11 in only up to 8% of the 
cases. On the other hand, it shows that the predicted values 
of ω

ν
 were larger than 1.3 only in storeys #3, #4, and #6, 

with a maximum of 42% of the cases exceeding such 
threshold. For both columns   exceeded 1.0 in all of the 
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cases for storeys #7 to #10, and in 73% and 35% or more 
of the cases for storeys #3 to #6, and storeys #2 and #11, 
respectively. In turn, the variable    exceeded 1.3 only in 
storeys #3, #4, #6, and #10, with a maximum of 62% of the 
cases for CT1 and storey #3.

The average values of P
1.0

, P
1.3

, and  , and   obtained 
for all the storeys are very similar for both columns CT1 
and CT2. In the particular case of P

1.3
, average values of 5% 

and 3% were obtained, which is rather low. On the other 
end, the average values of  indicate that  exceeded 1.0 
in 78% of the cases for CT1 and CT2, which is rather high. 
While the latter index indicates that dynamic amplification 
existed in most of the cases if    is used in the calculations 
of the static reference shear, the former suggests that the 
use of V

o,c
 with ω

ν
 = 1.3 is ‘appropriate enough’ for use 

in practice. This is, from a statistical inference point of 
view, there exists only a limited number of unfavourable 
cases. What is “acceptable” is a matter of discussion, but, 
as proposed by Rudner (1953), such definition seems 
to rely on ethical considerations. Further, such ethical 
considerations may be related to how unbeneficial are the 
anticipated consequences of exceeding the accepted limit.

Table 4 presents the values of P1.0, P1.3, , and  for 
columns CT3 and CT4. The results show that for these 
column types, the number of cases where ω

ν
 exceeded 

1.0 was smaller than for CT1 and CT2 (see Table 2). 
For CT3, ω

ν
 and  were larger 1.0 in 50% of the cases 

or less for all the storey levels, whereas for CT4, these 
variables exceeded 1.0 in 92% of the cases for storey #10, 

for example. The average of the results obtained for the 
individual storeys show that ω

ν
 = 1.3 was exceeded in 

only 1 and 3% of the cases, meaning that the associated 
formulation is unconservative, in average over the storeys, 
in only 5% or less of the cases considering each individual 
columns separately.

Table 4: Percentage of cases where thresholds 1.0 and 1.3 are 
exceeded, CT3 and CT4

Storey 
#

CT3 CT4

ω
ν

ω
ν

P
1.0

, % P
1.3

, % , % , % P
1.0

, % P
1.3

, % , % , %

2 0 0 4 0 0 0 0 0

3 31 8 31 23 73 27 73 50

4 31 0 38 0 42 0 69 8

5 31 0 50 0 69 0 81 0

6 50 0 50 4 69 8 85 8

7 50 0 50 0 73 0 92 0

8 50 0 50 0 77 0 92 0

9 50 0 50 0 73 0 92 0

10 50 0 50 0 92 0 92 0

11 0 0 50 0 0 0 0 0

All 34 1 42 3 57 3 68 7

Figure 8: Calculated dynamic amplification factors for V
o,c

 (eq. (12))

To compare shear amplifications factors obtained for all the 
column types and storey #, the results presented in Figures 
5 and 6 are merged into the graph presented in Figure 8 and 
9, respectively. The results presented in Figure 8 indicate 
that ω

ν
 takes values larger than 1 and smaller than 1.3 in 

the majority of the cases. Nevertheless, the limit of 1.3 is 
exceeded in some of the cases in the columns of the storeys 
#3, #4, and #6, reaching values as large as 1.7. Hence, even 
though appropriate for great majority of the cases, such 
limit is shown to be unconservative in some of them by 

Table 3: Percentage of cases where thresholds 1.0 and 1.3 are 
exceeded, CT1 and CT2

Storey 
#

CT1 CT2

ω
ν

ω
ν

P
1.0

, % P
1.3

, % , % , % P
1.0

, % P
1.3

, % , % , %

2 0 0 0 0 8 0 15 0

3 73 42 73 54 73 15 77 62

4 69 4 77 8 77 8 85 8

5 69 0 92 0 85 0 88 0

6 85 8 100 12 92 8 92 15

7 88 0 100 4 92 0 100 0

8 88 0 100 0 92 0 100 0

9 88 0 100 0 92 0 100 0

10 96 0 100 4 96 0 100 8

11 0 0 35 0 0 0 19 0

All 66 5 78 8 71 3 78 9
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an important extent. This is also true for the values of , 
presented in Figure 9. Table 5 summarizes the percentage 
of the times where ω

ν
 and  exceeded 1.0 and 1.3, , 

considering all the column types.

Figure 9: Calculated dynamic amplification factors for   (eq. (40)) 

Table 5: Dynamic amplification factors all columns

Storey #
ω

ν

P
1.0

 , % P
1.3

, % , % , %

2 2 0 6 0

3 71 25 74 53

4 64 4 79 7

5 74 0 89 0

6 86 7 94 11

7 88 0 98 1

8 88 0 98 0

9 88 0 98 0

10 95 0 98 3

11 0 0 37 0

All 66 4 77 7

Table 5 shows that ω
ν
 > 1.0 in 71 to 95% of the cases for 

storeys #3 to #11 considering all the column types. Such 
amount, on the other hand, is equal to only 2% of the times 
for storey #2 and 0% for storey #11. The condition ω

ν
 = 1.3, 

in turn, was exceeded only in storeys #3, #4, and #6, with a 
maximum of 25% of the cases in the columns of storey #6. 
These findings are also true for  , except that the number 
of cases where the limits are exceeded slightly increases, 
and that the number of times where  > 1.3 reaches as 
much as 50% of the cases. Including the results of all the 
column types, all the storeys and records, P

1.0
 = 66% and 

P
1.3

 = 4%. For  in turn,  = 77% and  = 7% of the 
cases, respectively. If storeys #2 and #11 are excluded in 
the calculation of P

1.0
 and , ω

ν
 > 1.0 and  > 1.0 in 82 

and 91% of the cases, respectively, meaning that dynamic 
amplification of shear is predicted in the large majority of 
the cases, even using the conservative calculation of the 
static reference shear of equation (12).

Conclusions
This work presented a numerical study on the amplifica-
tion of the shear forces calculated following static capac-
ity-based principles, due to dynamic effects. The paper 
reviewed the calculations involved in such shear demand 
and examined the fundamentals of capacity-based design 
as originally proposed and as recommended in the ACI318 
and NZ3101 codes. It was noted that the original method-
ology as well as the NZS3101 (2006) do require the use of 
a dynamic amplification factor equal to 1.3 for increasing 
the shear force in the columns of intermediate storeys (just 
as includes one for walls), whereas ACI318 (2019) does 
not. To examine: (1) the existence or not of such amplifi-
cation effects in columns of RC frames designed per the 
Chilean code, and (2) the appropriateness of the limit 1.3 
prescribed by NZS3101 for such case, the paper presented 
the calculated dynamic amplification factors ων

 for the col-
umns of two frames of a case study building designed with 
NCh433 and ACI318, using nonlinear dynamic analyses 
NLDA with a suit of 13 earthquake records. The results 
indicated that ω

ν
 > 1.0 was obtained in 66% of the cases 

considering all column types and storeys. However, if the 
bottom and top intermediate storeys are separated, such 
percentage increases to 83%, because ω

ν
 > 1.0 in only 2% 

and none of the cases in such storeys. The limit ω
ν
 > 1.3, 

on the other hand, was exceeded in only three storey lev-
els, with a maximum of 25% of the times, and occurring 
in only 4% of all the cases. Even though such amount is 
reduced, values as large as ω

ν
 > 1.6 were obtained. The 

results showed no apparent correlation with the PGA of 
the input motion, used as a seismic intensity measure. It is 
concluded that, in this case, a dynamic amplification factor 
ω

ν
 =1.3 is appropriate for the calculation of the shear de-

mands associated to capacity-based design considerations 
for frames.It is recommended that such requirement of the 
New Zealand standard NZS3101 (ωv = 1.3) is included in 
the new requirements of the Chilean code NCh430, un-
der development at the time of writing this contribution, 
acknowledging that its conservatism cannot be ensured 
conclusively. It is thought  that the non-inclusion of such 
provision does not help mitigating the undesired conse-
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quences associated to shear failure of RC columns part of 
multi-storey frames, which can be quite catastrophic.
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