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An original 2nd-order Method  of Characteristics 
(MOC) which it works with a five-point interpolating 
scheme valid for solving the hyperbolic and quasi-
linear partial differential equations that describe the 
transient flow phenomenon in pipelines is shown. The 
results obtained by both MOC 2nd-order and exact 
solution (MOC 1st-order) are compared. It is shown 
that MOC 2nd-order allows obtain near-to-exact 
results within a wide range of Courant numbers.

Keywords: artificial viscosity, Courant number, 
method of characteristics 2nd-order, water hammer

Se muestra una versión original del Método de las 
Características (MC) de 2do orden que trabaja con un esquema 
de interpolación de cinco puntos, válido para resolver las 
ecuaciones diferenciales parciales hiperbólicas y cuasi-
lineales que describen el fenómeno del flujo transiente en redes 
de tuberías. Se comparan los resultados obtenidos por el MC 
2do orden y la solución exacta (MC 1er orden). Se demuestra 
que el MC 2do orden permite obtener resultados cercanos a los 
exactos dentro de una amplia gama de números de Courant.

Palabras clave: viscosidad artificial, número de Courant, 
método de las características 2do orden, golpe de ariete

Introduction
Water hammer is a hydraulic phenomenon that it appears in 
pipe networks when flow is affected by some disturbance 
that it alters the flow velocity, such as the valve opening 
or closure, the relief devices failure, the pump start-up 
or shutdown, etc. Pressure fluctuations can cause serious 
damage in piping and hydraulic devices, which it can result 
in accidents and other consequences such as costs increase 
associated with water supply and water quality. For this 
reason, in transient flow analysis it is very important to 
know about the pressure waves and about the prevention 
or minimization of their undesirable effects. Wave analysis 
is a vital task that it must be included in the water supply 
systems design to ensure their safety and reliability in 
emergency conditions, and also to detect obstructions, 
defects, leaks (losses) and pipe wall damages (Duan et 
al., 2014). Ignoring the water hammer effects may lead 
to erroneous pipe wall thickness’ dimensioning during 
the design stage. Transient flow phenomenon is difficult 
to understand intuitively, although the current computers 

have allowed its automatic calculation -by means of 
numerical schemes- in systems with different complexity 
levels. The Method of Characteristics (MOC) has been 
widely used for transient analysis (Chaudhry and Hussaini, 
1985; Chaudhry, 2013), where the equations governing the 
phenomenon are transformed into ordinary differential 
equations that can be solved through characteristic lines 
using finite-difference approximations. For numerical 
stability reasons, the Courant number (Cn) must always be 
less than or equal to 1.0; Cn = aΔt/Δx , where a is the wave 
speed, Δt the time step and Δx = LP/N is the reach length 
with LP the pipe length and N the number of reaches. 1st-
order methods yield satisfactory results when the friction 
factor is small and Cn = 1.0. In systems transporting highly 
viscous liquids or in systems with small diameter pipes, the 
simulation may become unstable even with Cn < 1.0. On the 
other hand, the interpolations to be applied whenever solved 
using the MOC with Cn < 1.0 tend to soften wave fronts, 
and disturbances due to flow changes travel at a greater 
speed than the correct one (Chaudhry and Hussaini, 1985), 
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being necessary to apply alternative methodologies to 
overcome these disadvantages. Trikha (1975) recommends 
using different time steps for each pipe in order to obtain 
Cn = 1.0. Despite its advantages, this methodology 
requires interpolating at the pipe boundary nodes, which 
it is an error source when modelling complex boundary 
conditions. Wiggert and Sundquist (1977) propose an 
interpolation algorithm in the space (x) axis, which it has 
been widely used in water hammer programs because of its 
efficiency and ease of programming. Holly and Preissman 
(1977) present a more complex formulation based on a 4th-
order two-point method that is significantly more accurate 
than other higher-order methods using interpolations based 
on the four or five-point calculation. Goldberg and Wylie 
(1983) present two interpolation schemes (one implicit and 
the other one explicit) that operate on the time (t) axis of 
the space-time grid, both capable of reducing the numerical 
dispersion when MOC is applied with Cn < 1.0. Shimada 
and Okushima (1984) present two 2nd-order methods based 
on the solution in series and Newton-Raphson that they 
deliver results quickly and efficiently by omitting trivial 
terms calculated within the truncation error. Swaffield 
and Maxwell-Standing (1986) cite the Everett method as 
appropriate to reduce the numerical attenuation associated 
with Cn < 1.0. This method must be applied in tandem with 
Newton-Gregory method to interpolate in the nodes near-
to-pipe boundaries. Lai (1989) presents three multimodal-
type schemes that combine implicit schemes with explicit 
ones in order to attenuate the numerical dispersion. Yang 
and Hsu (1990, 1991) propose an improved version of 
the Holly-Preissman scheme, which however it presents 
a greater cost in terms of computational time. Sibetheros 
et al. (1991) investigate MOC applicability in tandem 
with spline-type interpolation polynomials for the water 
hammer’s numerical analysis in a frictionless horizontal 
pipe, finding that spline curves application significantly 
improves overall accuracy respect to both the MOC (linear 
interpolation) and the explicit finite-difference scheme 
(2nd-order). However, the method becomes complicated 
when it is required to represent the spline boundary 
conditions, and it presents problems when the transient 
modelling in short pipes is required. Ghidaoui and Karney 
(1994) investigate interpolation methods and the Holly-
Preissmann scheme. They use the equivalent hyperbolic 
differential equation concept that it allows evaluate the 

numerical scheme consistency, providing a mathematical 
description of both dissipation and numerical dispersion 
independently of Courant. In addition, the analysis 
allows comparing alternative approaches, and it explains 
why high-order methods should be avoided. Karney and 
Ghidaoui (1997) propose a flexible discretization scheme 
where several interpolation schemes are combined with the 
method of wave-speed adjustments. This hybrid scheme 
includes interpolations in a secondary characteristic line 
that it minimizes the distance between the interpolated 
point and the original characteristic line. 

The current article introduces an original MOC 2nd-order 
scheme with linear interpolation in the spatial axis valid for 
the water hammer analysis in pipe networks. The results 
obtained by both MOC 2nd-order and exact result with 
MOC 1st-order with Cn = 1.0, are compared. Equations 
governing the transient flow along with wave speed and 
MOC 1st-order formulation are extensively discussed in 
the classic books by Wylie and Streeter (1978), Chaudhry 
(1979) and Watters (1984). These topics can also be studied 
in recent articles by Twyman (2016a, 2016b, 2016c, 2017, 
2018). Finally, it is possible to study how to pose and solve 
boundary conditions within the MOC’s context in Karney 
(1984) and Karney and McInnis (1992), so no further 
details will be given here. 

Basic equations of the transient flow
When analyzing a volume control is possible to obtain a set 
of non-linear partial differential equations of hyperbolic 
type valid for describing the one-dimensional transient 
flow in pipes with circular cross-sectional area (Chaudhry, 
1979; Wylie, 1984):

where: (1) and (2) correspond to continuity and momentum 
(dynamics) equations, respectively. Besides,  is the partial 
derivative, H is the hydraulic grade-line elevation, a is the 
wave speed,  g is the gravity constant, A is the pipe cross-
sectional area, Q is the fluid flow, f is the friction factor 
(Darcy-Weisbach) and D is the inner pipe diameter. The 
subscripts x and t denote spatial and time dimension, 
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respectively. Equations (1) and (2), in conjunction with the 
equations related with the boundary conditions of specific 
devices, describe the phenomenon of wave propagation for 
a water hammer event.

Wave speed
The more general equation to calculate the wave speed in 
fluids without air is (Twyman, 2016b; Wan and Mao, 2016; 
Wylie and Streeter, 1978):

where K is the bulk modulus of the water, ρ is the water 
density, e is the pipe wall thickness, K is the volumetric 
compressibility modulus of water, E is the elasticity 
modulus of the pipe, c1 is a factor related with the pipe 
support condition, generally equal to 1 ‒ u2 (u is the 
Poisson’s ratio of the wall material), which corresponds to 
pipeline anchored against longitudinal movement (Wylie 
and Streeter, 1978).

Method of characteristics MOC
MOC is very used for solving the transient flow equations 
because it works with a constant wave speed and, unlike 
other methodologies based on finite difference or finite 
element, it can easily model wave fronts generated by 
very fast transient flows. MOC works converting the 
computational space (x) - time (t) grid (or rectangular 
mesh) in accordance with the Courant condition. It is 
useful for modelling the wave propagation phenomena due 
to its facility for introducing the hydraulic behaviour of 
different devices and boundary conditions (valves, pumps, 
reservoirs, etc.). According to Karney (1984) and Karney 
and McInnis (1992) the MOC proceeds by combining the 
dynamic and continuity equations together with unknown 
multiplier. Suitable chosen values of this multiplier allows 
the partial differential terms to be combined together and 
replaced by total differentials. When using the simplified 
governing equations, the result of this process is:

The two equations associated with the positive value are 
usually termed the C+ equations and the remaining two 
relations associated with the negative value are called the 
C -  equations (Figure 1). The head and flow values are 
known at time t and it is desired to know these values at 
time t + Dt. A typical such point is P, with unknowns HP 
and QP. The known values at time t can correspond to 
initial state values or, instead, they can correspond to 
computed values at previous Dt. From Figure 1, Q and H 
are known in the nodes (i - 1) and (i + 1), and their new 
values must be calculated at node P. Due to this the 
characteristic lines are projected from P to the x-axis so as 
to be able to intercept it at points L and R. Because of xP 
and tP  are specified by the analyst, L and R coordinates can 
be written as:

Figure 1: Space-time mesh for the specified time interval method

In order to calculate P the values in L and R must be 
known. However, only the grid point values in (i - 1) and 
(i + 1) are known. The values in L and R can be computed 
using linear (or higher order) interpolation schemes from 
the known conditions in (i - 1) and (i + 1). It is known that 
interpolations cause numerical dispersion and attenuation, 
which it has forced to apply more accurate high-order 
interpolation schemes whenever the pipe has Cn< 1.0 and 
when it is desired to leave unchanged the initial conditions 
of the problem (lengths, wave speed, etc.), or when there 
is a lack of a more stable numerical scheme than MOC. In 
MOC context, some analytic expressions can be obtained 
for the state variables at L and R nodes using numerical 
schemes with different interpolation orders (usually one 
or two). If U represents some state variable (H or Q), 
then the following expressions can be deduced according 
to Newton-Gregory interpolation scheme (i = 2,..., N) 
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(Twyman, 2004):

with , U- =Ui-1 - Ui,  U+ =Ui-2 - 2Ui-1+ Ui, U= =Ui+1 - Ui   and 
U++ =Ui+2 - 2Ui+1+ Ui . Equations (8) and (9) are general 
since when Cn→0, UL→UR→Ui. When Cn = 1.0 the 
interpolation does not exist and UL becomes Ui-1 and UR 

becomes Ui+1. On the other hand, when Cn = 2.0, UL 
becomes Ui-2 and UR becomes Ui+2. For this reason, the 
application of 2nd-order arrangements is sufficient to 
interpolate when the Courant number varies between 0 and 
2.0. In this case the values for the variables U0 and UN+2 , 
both located beyond the nodes 1 and N + 1 respectively 
(Figure 2), they can be calculated by an extrapolation 
procedure defined by the following expressions: 

Figure 2: Pipe nodes (adapted from Chaudhry and Hussaini, 
1985)

where U1  and UN+1 are the values corresponding to upstream 
and downstream pipe sections, respectively. Once known 
UL and UR is possible to calculate HP and QP from the 
following formulas when U is equal to Q and H according 
to the convenience:

where c = (gA)/a and Rf = f/2DA. Equations (11) and (12) 
can be rewritten as:

with:

It should be noted that (16) is valid along the positive 
characteristic line C +and (17) is valid along the negative 
characteristic line C - . By simultaneously solving (14) and 
(15) it is possible to obtain HP and QP for all interior points 
P in the characteristic mesh:

once QP is known HP, value can be calculated from (14) 
or (15). For boundary sections an additional formula 
is required, which it must be solved together with the 
characteristic equation (positive or negative) depending 
on the position of the first or last reach, respectively. The 
calculation starts with an initial condition, usually steady-
state flow.

Artificial viscosity
Artificial viscosity (AV) is a fictitious mathematical term 
that it is introduced in the equations when working with 
finite differences, and it generates a similar effect to the real 
viscosity. The AV is a numerical technique that generates 
a fictitious attenuation over the spurious instabilities that 
frequently appear when fast transient flow is solved using 
2nd-order numerical schemes. These instabilities generally 
appear in peaks form without physical meaning, and they 
may lead to destabilize the calculation due to equations 
nonlinearity (Brufau and García-Navarro, 2000). In other 
words, the phenomenon occurs when an approximate 
solution has an oscillatory and unrealistic behaviour 
respect to the analytical solution. In general, the precise 
cause of this effect is unknown, although it is known that 
they are generated when the first derivatives of the basic 
equations have more influence than the second derivatives 
or when the space-time grid is thick, with significant 
spacing between the nodes. Another cause could be the 
impossibility of the numerical schemes to capture all the 
discontinuities features, so there would be certain motion 
scales without numerical solution (Malekpour and Karney, 
2016). The main difficulty of applying the AV lies in the 
dispersion amount determination needed to smooth (or 
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eliminate) the numerical oscillations without sacrificing 
the method’s accuracy level, and without unnecessarily 
affect the wave shape (Brufau and García-Navarro, 2000). 
The AV proposed in this paper recalculates H and Q every 
two time steps using the dissipation constant γ when the 
node i varies between pipe sections 2 and N, being the 
formula as follows (Abbott and Basco, 1989):

With U equal  to Q  or H as the case may be. In general, AV 
is easy to program and apply, although it has the 
disadvantage that its coefficient g is difficult to estimate, 
being necessary to apply a trial/error procedure in order to 
determine its most suitable value. AV, independently of its 
shape, is an indispensable tool to suppress numerical 
oscillations (Hou et al., 2012) generated by high-order 
numerical schemes.

Results: example 1
Water hammer is analyzed in a simple pipe network (Figure 
3) using MOC 1st-order and 2nd-order. System includes a 
constant head reservoir (upstream end, node 1) with H0 = 
100 m, a steel pipe and a valve (downstream end, node 2), 
where H0 = 98.1 m, being the pipe head loss due to friction 
Dhf equal to 1.9 m. The pipe data are: length LP= 4800 m, 
wave speed a = 1200 m/s, pipe cross−sectional area A = 
3.14 m2, initial flow Q0 = 2.632 m3/s. Pipe network was 
discretized with N = 10. The friction factor (Darcy) is f 
= 0.022. Transient flow is generated by the valve closure 
in Tc = 35 s (Figure 4), and it can be considered as slow 
because the ratio 2(LP / a) = 8 s is much smaller than Tc. 

Figure 3: Pipe network scheme (example 1)

For all effects the exact result is given by MOC 1st-order 
with Cn= 1.0. The maximum simulation time is Tmax = 60 s. 
Figures 5 and 6 show the envelopes for the maximum and 
minimum pressure heads obtained by MOC 1st-order and 
2nd-order when the pipe is discretized in order to obtain 
the following Courant numbers: 0.2, 0.4, 0.6, 0.8 and 1.0, 

which is achieved with the time steps Dt = 0.08, 0.16, 0.24, 
0.32 and 0.40, respectively. For example, the value Cn = 
0.2 results from the expression: aDtN/LP = 1200 · 0.08 · 
10/4800. Figure 5 shows that MOC 1st-order generates 
attenuations in the maximum pressure head that tend to 
decrease as Courant number grows toward the critical 
value Cn = 1.0. Figure 6 shows how MOC 2nd-order also 
generates attenuations, but on a smaller scale compared to 
1st-order MOC as Cn  moves away from 1.0.

Figure 4: Valve opening t (%) versus time

Figure 5: Extreme pressure heads (MOC 1st-order)

Figure 6: Extreme pressure heads (MOC 2nd-order)

When Cn < 1.0, Figures 7 and 8 show that MOC 2nd-order 
is more accurate than MOC 1st-order. Regarding CPU 
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execution times, the speed of both schemes is almost 
similar, with no significant differences (Figure 9). The 
examples were carried out in a standard PC with processing 
speed of 1.48 GHz.

Figure 7: Error (%) for maximum pressure head

Figure 8: Error (%) for minimum pressure head

Figure 9: CPU execution time.

Results: example 2
System analyzed (Amara et al., 2013) is shown in Figure 
10, which consists of a steel pipe of length LP= 10000 
m, wave speed a = 1000 m/s and diameter D = 1 m. The 
steady-state flow is Q0 = 2.0 m3/s, and the head in the 
constant level reservoir (node 1) is H0  = 400 m. The friction 
factor is f = 0.01976 and the pipe head loss due to friction 
Dhf is equal to 65.3 m. Transient conditions are generated 
by instantaneous closure of the valve located at the pipe 
downstream end (node 2). In this case transient flow can 

be considered as fast because 2(LP/a) = 20 s is much larger 
than Tc = 0 s. For all effects the exact result is given by 
MOC 1st-order with Cn = 1.0. The pipe was divided using N 
= 30. With the Courant number Cn = 1.0, the time step is Dt 
= LP/(aN) = 10000 / (1000 · 30) = 0.333 s. The maximum 
simulation time is Tmax= 120 s. Figures 11 and 12 show the 
pressure versus head plot at the valve when the transient is 
simulated using MOC 1st and 2nd-order, where it is noticed 
in the second case the appearance of the typical spurious 
peaks related to the 2nd-order schemes.

Figure 10: Pipe network scheme 2 (adapted from Amara et al., 
2013)

Figure 11: Head versus time plot at the valve (MOC 1st-order)

Figure 12: Head versus time plot at the valve (MOC 2nd-order)

These fictitious pressure peaks can be easily attenuated by 
applying the AV. Figure 13 shows the pressure head versus 
time plot when the MOC 2nd-order is applied using the AV 
with g = 0.01. 
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Figure 13: Pressure versus head plot when MOC (1st and 2nd-
order) is applied

Depending on the system complexity, the detection of the 
most suitable g value may mean performing a trial/error 
procedure. One interesting point about MOC 2nd-order is 
that it can work with Cn > 1.0 without losing accuracy or 
numerical stability. For example, when Cn  is greater than 
1.0 (for example, 1.08 or 1.80), the results shown in Figure 
14 are obtained. As expected, the MOC 1st-order shows an 
unstable numerical behaviour, rapidly tending to a fictitious 
state of water column separation near pipe midpoint. On 
the other hand, MOC 2nd-order was able to conclude the 
simulation without numerical problems, although it was 
necessary to adjust g value up to 0.10 (when Cn = 1.08) and 
up to 0.20 (when Cn = 1.80), which allowed to obtain near 
exact result, especially when extreme pressures values 
must be shown. Table 1 shows MOC 1st and 2nd-order 
execution time when time step can be increased thanks to 
g attenuation effect, which helps to eliminate the typical 
instability effect of the explicit schemes when they are 
applied with Cn > 1.0. 

Figure 14: Pressure versus head plot when MOC is applied using 
different Courant numbers

In Table 1 it can be verified that MOC 2nd-order allows the 
increase of time step magnitude up to 82%, reducing the 
execution time by approximately 14%, being in this case 
faster than MOC 1st-order.

Table 1: Results obtained by MOC

Method Cn Dt, s g
Execution 

time, s

MOC 1st-order 1.00 0.33 --- 31.9

MOC 2nd-order 1.08 0.36 0.10 46.4

MOC 2nd-order 1.80 0.60 0.20 27.5

Discussion and conclusions
For the numerical examples presented in this paper, it is 
evident that MOC 1st-order works properly only when Cn  = 
1.0, showing attenuations and numerical instability when 
Cn < 1.0 or when Cn > 1.0, respectively, which obviously 
limits its application field. This turns evident in case of 
attempting to solve the water hammer in complex pipe 
networks with great number of different pipes, where the 
accurate solution it can be impossible to reach without 
altering or modifying some initial condition. A solution way 
is to leave unchanged the initial conditions and try to apply 
MOC by solving the state variables using interpolation 
techniques. MOC 1st-order with linear interpolation works 
fine only when Cn  is closer to 1.0, showing significant 
errors as Cn  moves away from 1.0. In contrast, MOC 
2nd-order with quadratic interpolation registers smaller 
magnitude errors when Cn < 1.0, regardless of whether it 
is a slow or fast transient, although in the second case it 
must resort to a numeric filter (e.g. artificial viscosity AV) 
to soften the fictitious numerical oscillations. The AV is 
simple and easy of programming, although the optimal 
value determination may take some time due to the trial/
error procedure implementation, which may mean running 
the computational program as many times as necessary. On 
the other hand, MOC 2nd-order formulation slightly affects 
the transient simulation performance with respect to the 
calculation speed and memory capacity use. In addition, 
the 2nd-order interpolation approach has a good numerical 
behaviour when Cn > 1.0, even though in certain cases the 
g value must be adjusted. As general conclusion, MOC 2nd-
order is as fast and efficient as traditional MOC 1st-order, 
and it is less sensitive to numerical effect (attenuation, 
instability) which is generated when transient flow is 
solved in systems where Cn  is different than 1.0, which 
makes a useful method for solving the transient flow in 
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pipe networks where its shape and configuration makes 
very difficult or impossible to fulfil with the Courant 
condition in all pipe sections. 
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