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The extended finite element method (X-FEM) is 
used as an alternative for the modelling of the bond 
behaviour between reinforcement and the surrounding 
concrete in reinforced concrete structures, through 
either reinforcing bars, fibres or others. The interface 
of composite materials introduces a discontinuity and, 
therefore, can be numerically modelled using X-FEM. 
This method is capable to model discontinuities 
without modifying the discretization by the addition of 
new degrees of freedom to the standard finite element 
approximation. Bond elements (or cohesive elements) 
are presented in order to be compared with the proposed 
alternative. The results obtained are also compared to 
reference solutions, showing a good agreement.

Keywords: reinforcement, finite element method, bond 
laws, bond elements, X-FEM, pull-out test

El método de los elementos finitos extendidos (X-FEM) se 
emplea como alternativa para la modelación de la unión 
entre el refuerzo y el hormigón circundante en estructuras de 
hormigón reforzado, ya sea a través de barras de refuerzo, 
fibras u otros. La interfaz de los materiales compuestos 
introduce una discontinuidad, y por lo tanto puede ser 
modelada numéricamente a través de X-FEM. Este método 
es capaz de modelar discontinuidades sin modificar la 
discretización mediante la adición de nuevos grados de libertad 
a la aproximación estándar de elementos finitos. Se presentan 
los elementos de unión (o cohesivos) para ser comparados 
con la alternativa propuesta. Los resultados se comparan 
también con soluciones de referencia, mostrando una buena 
correspondencia.

Palabras clave: refuerzo, método de los elementos finitos, leyes 
de unión, elementos de unión, X-FEM, ensayo de arranque

Introduction
Reinforced concrete depends on the combined action of 
the concrete and its embedded reinforcement to ensure 
proper operation during service life. This action would not 
be possible without a successful transfer of bond forces 
along the interface between both materials. In this regard, 
bond determines ultimately the behaviour of the structure. 
One of the most common and simplest ways to model this 
interaction is through bond laws (or cohesive laws), which 
belong to the group of phenomenological models. This 
means that for its understanding, no detailed knowledge 
of the underlying physical process is required. Bond 
constitutive laws describe relationships between the stress 
acting on the interface and the corresponding interfacial 
relative displacement (slip and opening), and define the 
loss of load transfer capability through the interface.

Bond laws have been incorporated into a finite element 
analysis using, among others, bond elements, also known 
as cohesive zone elements (Dugdale, 1960; Barenblatt, 
1962), which are placed between bulk elements and allow 
the calculation of the relative displacements between 
concrete and the reinforcement and, therefore, the amount 
of bond forces along the interface. 

In the present paper, as an alternative to bond elements, we 
extend the applications of X-FEM for the cohesive crack 
models (Moës and Belytschko, 2002) to the modelling 
of the interface between concrete and its reinforcement, 
through either reinforcing bars, fibres or others. 

In X-FEM, in order to consider the presence of the crack, 
the finite element approximation is enriched with local 
functions based on the asymptotic and discontinuous 
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features of the displacement field, thus allowing the crack 
to be completely independent of the mesh. This new 
methodology was presented in Belytschko and Black 
(1999) and Möes et al. (1999). A good overview of this 
method is given in Dolbow (1999) and Fleming (2011). 
Even though this method was developed to model discrete 
cracks, its formulation can be used to model any type of 
discontinuity within the material, such as those introduced 
by the interface. For example, Radtke et al. (2010) used a 
special enrichment function that can handle discrete thin 
fibres in a continuum matrix without meshing them.

Bond constitutive laws
The constitutive behaviour of the interface between 
concrete and reinforcement can be described by means of 
bond laws, which define relationships between the stress 
acting on the interface and the corresponding relative 
displacements. The relative displacement tangential to 
the interface is commonly called slip and is denoted by s, 
while the relative displacement normal to the interface is 
called opening and is represented by ω. The bond stresses 
can be also divided into a tangential component t and 
into a normal component σ. Usually, in the literature the 
tangential component t is called bond stress, while normal 
component σ, radial stress; this notation will be adopted in 
this work.

Different kinds of bond laws can be found in the literature. 
Most of them can be classified into the following groups: 
polynomial laws, piece-wise linear laws, exponential laws 
and rigid-linear laws. A more detailed description can be 
found in van den Bosch et al. (2006). Bond laws can be 
also categorized in uncoupled or coupled. In an uncoupled 
bond law, the tangential bond stress t is independent of the 
opening ω , while the normal bond stress σ is independent 
of the slip s. In a coupled bond law, the normal and 
tangential bond stress depend on both slip and opening. 

Bond laws present generally a linear-elastic behaviour until 
a certain threshold that represents the bond failure point. 
Once this limit is exceeded, the curve starts to exhibit an 
irreversible softening behaviour, which is associated with 
a decrease of the transfer capacity of bond forces along 
the interface. The parameters that define the bond laws 
are determined empirically, and depend mostly on the 
geometry and properties of the materials involved, as well 
as on the failure mechanism. Figure 1 shows schematically 

a typical bond stress-slip relationship, valid for any type of 
reinforcement. 

Figure 1: Bond stress-slip relationship

Bond elements formulation
Let focus our attention on Figure 2, which shows an 
idealization of a finite element mesh in the vicinity of 
the interface. The mesh is composed of traditional bulk 
and bond elements. Bulk elements are discretized using 
two-dimensional finite elements. Unlike traditional finite 
elements, bond elements have a width equal to zero 
(in Figure 2 the bond element is depicted as having a 
finite width in order to simplify the definitions) and no 
stiffness, since they do not represent a physical material, 
but a tool to mediate the interaction between the adjacent 
elements. The behaviour of bond elements is governed by 
bond constitutive laws, and therefore, instead of strains, 
the deformation field is defined in terms of the relative 
displacements. Bond elements contain n pairs of nodes 

 and each pair occupies the same location in 
the undeformed configuration. 

Figure 2: Finite element mesh, bond elements
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Nodes  belong to the concrete element, while 
nodes  belong to the reinforcement element. The 
relative displacement within the element can be determined 
as the difference between the displacements of any two 
points (point  and node  for example). In the 
global coordinate system (x, y) the relative displacement 
is given by:

where N (x) is a matrix containing the shape functions and 
is defined as follows:

and  is a vector that groups the degrees of freedom of the 
bond element:

One-dimensional shape functions are use in the definition 
(2), which can be formulated in the natural coordinate 
system by the Lagrange polynomials:

where n represents the number of pairs of nodes of the 
bond element, and ξ is the so called natural coordinate 
(-1 ≤ ξ ≤ 1). 
In the simplest case, where the bond element has only four 
nodes, the shape functions take the following form:

The relative displacement in the local coordinate system 
can be obtained by the transformation:

where R is the transformation matrix from the global into 
the local coordinate system:

Here,  and  are the unit vectors of the local coordinate 
system, see Figure 2.

From now on, the local relative displacement local will 
be denoted only by .

The energy balance of the system must be expanded by 
adding a bond (cohesive) term to the total potential energy:

where Wbond is the work of the bond stresses along the 
interface surface Ω and is given by:

with:

where An and At are the contact areas associated with the 
bond stresses σ and t, respectively 

 is the bond stress vector and is defined by the bond 
constitute law, i.e. .

Replacing the discretization given in (1) in this last 
equation (11), an expression for the element bond force 
vector is obtained:

The discretization performed above leads to a nonlinear 
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the interface is treated using a generalized step function, 
which takes the value on one side of the interface and -1 
on the other, that means:

Therefore, only the nodes located on the interface are 
enriched with this function. Figure 4 shows the enrichment 
strategy of the nodes. 

Figure 4: Enrichment strategy

Then, the X-FEM approximation of the displacement field 
leads to:

where bi are the extra degrees of freedom associated with 
the step function, and IH is the set of nodes enriched with 
this function. Special care must be taken in the evaluation 
of the step function of the enriched nodes, since they are 
located on the interface and the definition (16) is, therefore, 
ambiguous. In this case, the function H(xi) takes the value 1.

For the calculation of the line integrals presented below it 
is necessary to divide the interface into segments, which 
are defined by the borders of the adjacent elements. For 
example, in Figure 3, the interface segment is limited 
by the nodes 1 and n and groups the degrees of freedom 

.

Using the same definition given in the section Bond 
elements formulation, the X-FEM relative displacement 

problem. In this regard, to develop an efficient incremental 
solution procedure, it is necessary to define the element 
tangent matrix for the bond element. Taking the derivative 
of (12) with respect to the nodal displacements yields:

The evaluation of the line integrals presented above are 
carried out through numerical integration methods for 
each bond element, and the resulting element matrices are 
assembled in the global matrices of the system. Finally, the 
discrete equilibrium equation can be written as:

where  is the internal force vector,  the external 
force vector and  the bond force vector of the system.

X-FEM formulation
As in the case of a crack, the displacement field is 
discontinuous along the interface and, therefore, can be 
modelled using X-FEM (Figure 3).

Figure 3: Finite element mesh, X-FEM

The main idea behind X-FEM is to enrich the classical 
finite element approximations:

with local information about the solution u, in order to 
capture its local features. Here, I is the set of all nodes 
of the system. The fact that the displacement field is 
discontinuous on the interface can be incorporated into 
the finite element approximation. The discontinuity across 
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approximation in the global coordinates system can be 
written as:

where N(x) is defined as follows:

and be is a vector that groups only the degrees of freedom 
associated with the step function of the segment under 
analysis:

The shape functions are defined in the same way as in (4).

The relative displacement in the local coordinate system 
can be obtained by the transformation:

with R given by (8).

In this case, the element bond force vector and the element 
tangent matrix are written as: 

with A having the same definition as in (11).

The line integrals presented above are calculated over each 
interface segment, and, as in the case of the bond elements 
formulation, the resulting element matrices are assembled 
in the global matrices of the system.

Numerical examples
In order to validate the proposed alternative with regard 
to the bond behaviour, three pull-out tests, performed 

by Lettow (2011), were modelled. The test specimens 
correspond to a cube with 200 mm sides with embedded 
steel bars. The reinforcing bars were positioned at the 
centre of the specimen with embedment lengths of 3φ. This 
length prevents the yielding of the bar before its pull-out. 
The diameter φ of the bars are 6 mm, 12 mm and 16 mm, 
for the tests 1, 2 and 3, respectively. The test setup is shown 
in Figure 5. The models were built with 804, 768 and 770 
4-nodes quadrilateral elements for the tests 1, 2 and 3, 
respectively. Considering that the out of plane stresses 
are negligible in comparison to the in plane stresses, a 2D 
plane stress model was used. 

Figure 5: Test setup for the pull-out tests

Young’s modulus E and Poisson’s ratio u of the reinforcing 
bars are E = 200000 MPa and u = 0.3, while for concrete 
are E = 26287 MPa and u = 0.2. The thickness of the 
specimen is h = 200 mm. In all the numerical examples, 
the material behaviour was assumed to be linear elastic. 
The equilibrium equations are solved by the Newton-
Raphson method. 

The bond stress-slip relationship according to Model Code 
2010 (Fédération Internationale du Béton, 2012), is used:

The parameters that defined the bond stress-slip relationship 
are the same used by Lettow (2011), and are presented in 
Table 1. The normal relative displacement is assumed to be 
negligible. For this purpose, a penalty formulation is chosen, 
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where σ = ϵNω. A value of 106 for the penalty factor ϵN is 
enough to avoid penetration or separation of the interface 
faces. 
Table 1: Parameters of the bond stress-slip relationship

Test s1, mm s2, mm s3, mm tmax , 
MPa tƒ, MPa

1 1.09 1.89 8.0 12.0 5
2 0.77 1.37 7.5 11.5 4
3 0.44 0.94 5.0 11.0 3

* α was equal to 0.4 in all tests

Since the reinforcement corresponds to steel bars, the 
contact area At associated with the tangential bond stress τ 
is equal to the sum of the perimeters of each bar, i.e. nφπφ, 
where nφ is the number of the reinforcement rods.

Figures 6, 7 and 8 show the bond stress-slip curve for both 
methods exposed above. The results are in good agreement 
with the numerical and experimental results from Lettow 
(2011). On the other hand, the curves obtained by the 
bond elements formulation and X-FEM are identical, 
which shows that X-FEM can be used as an alternative for 
modelling of bond interaction of reinforcement concrete.

Figure 6: Bond stress-slip curve, Test 1

Figure 7: Bond stress-slip curve, Test 2

Figure 8: Bond stress-slip curve, Test 3

Summary
X-FEM was used to model the bond interaction between 
concrete and its reinforcement, allowing, firstly, the 
calculation of the interfacial relative displacements 
and the bond stresses through bond constitutive laws, 
and, secondly, the transfer of bond forces between both 
materials. Pull-out tests were modelled considering 2D 
plane stress in order to validate the proposed alternative. 
The numerical results show good agreement with results 
available in literature, and are identical with those obtained 
by the bond elements formulation. These results confirm 
the reliability of the X-FEM approach as an alternative to 
bond elements.

The proposed methodology is particularly appropriate for 
the modelling of fracture in reinforced concrete structures, 
where the cohesive cracks are also modelled using X-FEM. 
In this case, the interaction between both cohesive cracks 
and interfaces can be effectively performed.
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